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“oreword

Antznna and waveguide technology plavs a3 large role in cen-
, temporary radio engineering and is rapidlv developing land in hand
b § with it. 3Specialists are Interestad in the systematic acquisition
'J' of information on the developmenc of one ov ancther of the many
trands in antenna technolegy, in results of recent theoretical and
experimental studies in the area of antennas, and in adiacent sci-
entific and technclogzical fields, as well as in che discussions
surrounding questicns of interest tc them. In addition, inasmuch
as at the present articles on the questions to be indicated here
are published in varicus journals, their ccncentration in one print
medium is also to b5e desired.

The Antenna Seccion of the ScientificTechnological Society
2 -
Zer Radio Engineerin: and Electronic Communicatiors im. A. §S. Fopova,
L

1
together with the "Svyaz'" Publishers, has begun £c issue a se

of regular publications of works of the Section in the
lections of articles under the title, "sntennas.” The present col-
lection is the first isste. The editerial board hopes that the
regular publication of articles and works of the Section, articles
reflecting the prasent level in antenna techinclogy and fields native
to that subject, will be useful for a large porticn cf radio special-
ists.

Success in initiating an Antenna Secticn and in a publishing
venture would be unthinkable without the active creative participa-
tion of members of the Scciety in this endeaver. Tais participation
mayv be expressed, not only in the publicaticn of articles, but also
in reviews of articles submitted for publication. 1In connrection with
this, the editorial board would like to express its gratitude to
G. A. Fvstropov, V. D. Kuznetsov, and A. K. Stolyarov, who took par:, .
together with members cf the editorial board, in reviewing the arti-
cles submitted for publication in the first collection.

The editorial board will be grateful to readers for their criti-
cal commentaries and suggestions concerning the nature of these col-
lections and the materials published in them.

Reader commentaries, as well as materials for subsequent collec-
tions should be directed to the editors of '"Svyaz'" Publishers of the
"Antennas" collections (Moscow Central, Chistoprudnyy Boulevard, 2).

Editcrial Roard
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THE DESIGH AND METHODS FOR CALCULATING THEZ PARAMETERS 7o
FREQUINCY AND LOW FREQUENCY ANTEXNNAS

orF ¥

2ROEL
VI RE

B. V. Braude, E. G. Aleksandrova

Zxamined here are problems in the rational design of base-station antennas
of the capacitor (volumetric) kind. It is demonstrated that the basic electri-
cal features of these kinds of systems are determined only by the volume occupied
bv the antenna system and do not depend on its configuration; the criterion for
the selection cof the configuration may be the svstem cost. Here, a method for
calculating the basic parameters (capacitance, operational height, and loss re-
sistance) in the antenna grounding system.

Introduction

The necessity for creating communication systems with enhanced reliability
and effective range has once again attracted the attention of specialists to the
rangs of low frequency and very low frequency wavas; these waves possess not only
the capability of being propagated at great distances with relatively small at-
tenuation, but alsc assure stable functioning under conditions of icnospheric

disturbance.

In creating a radio station using the low frequency (LF) and very low fre-
quency (VLF) ranges,I the predominating problem is the choice of a radiating sys-
tem that must have the required electrical parameters, reliability, and lowest

possible cost.

It has been impossible up to now to predicate the antenna dimensions for an-
tennas working in this wave range, although as a rule, as with the antenna dimen-
sions of antennas in other wave ranges, the dimensions are roughly dependent on
wave length. It is known only, however, that these antenna dimensions are small

in compariscn to wave length.

Despite the fact that the electrodynamic model of this kind of system is
uite simple, the creation of LF and VLF antenna systems is connected with great

difficulties, first of all, because of the enormous margins of reactive power in

lye are concerned here with frequency ranges of 150-~50 kHz (the conventional long
waves) and 50-10 kHz (conventional very long waves).

N ST ANPTRRTENES ¢ YAy o g T D
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he neacessity for modern systems to function

It should bz ramarked that up to the present time the only criterion for /5
evaluating the effectiveness of antennas of the type indicated here has not been

macde use of: problems in rational design have been approached by means of a

method of sampling, but the choice of optimal system dimensions has been depend-

ent on the designer's experience.

General Design Principles

In designing LT and VLF antennas, it is necessary to take into account that
it 1s the operaticnal conditicns in the long wave porticn of the frequency range,
where the antenna and its elements for tuning form a simple oscillatory circuit,
that will be the most troublesome. ]

The effectiveness of fixed or bhase-station antennas, which may be called 1
voluimetric type antennas, is characterized by their Q-factors, by which is under-
stood the ratio of reactive power reserve in the antenna to its emissive or radi-~

ating power. For antennas whose dimenslions are small in comparison with wave

length, radiation resistance can be computed acccrdirz to Rucenberg's formula,
and the computation of reactance is based on taking the antenna to be in the shape
of a flat capacitor, without taking into account edge effect influences. This
latter does not lead to any appreciable error, because the allowable error is
compensated for by a drop in capacitance, caused by the wire structure of the

curtain array.

The antenna Q-factor is calculated as the ratio of its reactance to its radi-

ation resistance, written in the form:
3:3 . '

Q4=4, . i}

Aaty

where % is wave length; v=5Sh, the volume occupiad by the antenna; S is the sur-
face area occupied by the antenna; h is the height of the antenna curtain array

suspension, which may be taken equal to the antenna operational height.

The antenna efficiency coefficient is determined by the following expression,
£irst introduced by A. A, Pistol'kors [1]:

2




where Qn is the Q-factor of the adjustment elements taking into account antenna

losses.

The antenna circuit Q~factor and the antenna bandwidth are expressed as:

U=t )
2= Qx J

dere, f is the carrier frequency.

When a power P is fed to an antenna circuit, it is easy to derive the fol-

£
- . . . 1
sowing expressicn for the voltage on the antenna:-
I } WP *

o e {4
3 S

L

guations (1)~(4) make it possible te establish the following important con-
clusions: (1) The antenna circuit efficiencyv coefficient and its bandwidth at
given wavelengths and adjustment element Q-factors are determined only by the
volume occupied by the anterna system, and does not depend on the configuration

of this volume. 1In other words, an antenna may take up a small surface area, but

it must be suspended on high masts, and if the antenna is suspended on low masts,

it must take up a large surface area. (2) The antenna voltage at given wave-
lengths and volumes is determined by the radiation power, and it increases in the

height of the masts used for suspending the antenna curtain.

It is expedient and necessary tc use the cost of an antenna as a critericn
for finding 1its optimal volumetric configuration; the cost is basically determined
by the weight of the metallic par:ts used for supporting the antenna curtain. The

weight of metal parts, in its turn, is proportional to the load con the masts and
the number of masts.

Let the lcad on the masts be determined by wind pressure cn the antenna cur-

tain array. Then, the load on one mast is expressed thusly:

T=£L, (3)
p

lrormulas (1) and (4) are also derived ia [19].
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Assuming that the span length and the conductor sag are proportional to the

e . - . f oS ;
mast heignt H, and the number of masts in the syvstem is N=Tty we derive the fol-

©

ssion for zhe total waight G of the metal work:

lewing zuipr

Tais expressicn was first derived by Yu. &. Savitskiy.

the conductor dicmeters of the antenna curtain array are proportional to

S
the volzage as dstiarmined 5y equaticn (4), we have:

<

{7

1
-~ :
C=K—p—

tn

nt cf proporticnality. To fincd the coefficizsnt of pro-

clie
g portionality, it is sufficient to calculate any ccncrete antznna systenm, ®
3 from equation (7), which determines in the final anaiysis the cost of the /:

. antenna, it follcws that the antenna cost is proportional to the square of the

wavelength and the square roet of the radiational power. Further, it follows from
this equation that antenna cost is reduced with an increase in mast height. It

is necessary ¢o remember, however, that together with 2n increase in mast height,
the surface area cccupied by the antenna, as well as the number of antennas, must
be decreased. An increase in mast height is cconnected at the same time with a

proportional increase in antenna voltage.

In this way, it is advisable to use higher masts in designing LY and VLF

antennas, if the mast height is not restricted by any kinds of special concditioms.

The antenna volume required for assuring determined featuresand characteris-
tics can be realized in various ways. This may be by means 5f a system macde from
F one or several gamma-shaped, T-shaped, or umbrella antennas working in parallel,
whose feed is realized according to the simple parallel circuit suggested by I. G.

Frevman {2], or according to the circuit of Aleksandersen. [3-3]. The slot radiator

‘According to a communication from G. 2. Ayzenberg, for scme types of antennas,
the value of H in formula (7) should be more correctly substituted by H" (n<l).
The value of n depends on the concrete type of antenna system being used.

R




schemes with extended horizontal pertions, suggested by G. Z. Ayzenberg and

studied by B. S. Yadenenko [6], can zlso be used.

In t¢sing slots that are disconnected or open on the ends, these kinds of
vibrations are of considerable interest also for the wave ranges under coansidera-
tion here. A similar system was used in creating the "valley" antenna [7], ac-
cording tc which the horizontal curtain is suspended between mountain ridges."

B

The lavouts for the antenna types indicated above are shown in Figs. 1-4.

29,

. i. Antenna system with horizental Fig. 2. Antenna system with horizontal
tion in the shape of a convex poly- portion in the shape of a six-pointed
cn. star.
ev: {a) view along AB

The choice of the number of individual constituent elements making up the
antenna system volume necessary for assuring the required electrical characteris-
tics iz determined basically bv *he range cf waves over which the antenna must
function, as well as by its slewability and reliability. Normally, the number
of system elements is chosen in such a way that their natural resonance frequency
is equal to, or almost equal to, the highest range frequency. In this case, the
necessity for using expensive capacitors for adjusting the antenna disappears,
and antenna adjusting is carried out only by neans of inductors. The existence
of several elements also lowers the ground losses and enhances station slewability

as a whole.

lThe efficiency coeificient for this kind of antenna turned out to be low due
to the negligible conductivity of the mountain rock in the area where the an-
tenna was set up. As slight conductivity in rock is characteristic for almost
all mountain regions, the effectiveness of ''valley" antennas is low as a rule.

sliiiaal

.ot
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Ti:zo 3. Anterna systen with horizontal Tiz. 4. "vallay" arntenna.
portion ia the shape of a rectangular
screen,
L
r An Important place in designing antennas is occupied by the proplzwm of
L selecting maximum veltage vaiues. For ceonductors with diameters cn the order
t of 25 mm, the maximum allowable voltage at which corona losses do not exceed ;& 4
f | allowable values, is about 290 effective %XV. This voltage Is also used in modern
large~scale VLF radio staticns. It is characteristic that the *“ransiticn to
i
higher wvoltages does nct lower the cest c¢f antenna equipment, because conducters ;

with larger diameters must be used in this, and as a consequence, the metzl con- ij
struction weight increases {see formula (4)]. In addition, with an increase in :
voltage, the insulzation probdlem for the antenna curtain tecomes more complex, =s-
pecially with regard to the antesnna fzed, and for this reason using voltages .
3 higher than 200 effective kV 1is not possible at present. ‘

v

The most complex prcblem in creating LF, and especialily V

o

LT, antennas is de- .
riving high values for the coefficient of efficiency. As may be seen from the
ratios cited above, this value depends as a rule on the selection of antenna

volume, which determines its Q-facter, QA, and the Q-factors >f the adjustment

e teor it ol

3 elements, taking into account ground losses . Keeping in mind that the margins
g 8 a ping g

of reactive power in extended inductors and in the antenna system are identical,

o i e

it is possible to choose a surface area for an antenna and the grounding equipment

taking the condition of the equality of losses in the grocund and in the extensicn !
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inductars 2s a starting point. Fer this, it is necessary to decrease by two
h

cimes the 7-factor for the zdjustment elcments cited above and to be enterad in

expressicn (1), in compariscn with the natural inducter G-value. It is natural
that in =ach concrete case grcund losses and losses ' the extension inductors

can aceur in other relationships and according to other raties. However, the ce-

U

mands nade on the adjustment elements znd the grounding systems should be regulated
b <] J S

bv neans of a predetermined method.

It sheculd be noted that the use of Litz wire witia a large cross section makes
it possible to cerive at the present time a natural J-factor for the extensicn in-
ductors of about 1,500. Taking the cited (-facrtor of an inductor to be equal to
75C, from formulas (1) and (2) it is easy to conclude that for the creation, for
zxample, of 2o antenna with an efficiency coefficient on the order of 353% for = /
wave of 30 km, its volume must be approximately equal to 1.35 km°. For this, the
overzll extent of the conductors in the grounding system, depending cn the con-

ductivizr of the soil, may amount to 1,000 to 3,000 km.

The Method for Ca_culating Basic Parameters

The Calculation of Static Capacitance and the Natural Rescnance Wave

The most widely used method in calculating the capacitance of antenna svstems
is the method derived by How; however, for greatly extended wire curtains, it
turns out to De very cumbersome. The considerable success achieved recently in
the area of the theory of wire curtains (mostly, thanks to the work of M. I.
Kontorovich (8, 9]), makes it possible to substantially simplify the methods ZIor

calculating antenna capacitances.

The individual elements of an antenna made from a series of conductcrs are
substituted by thin, solid metallic surfaces, whose dimensions and shapes corres~
poad to the wire portions of the antenna. If the distance between conductors in
the net is smaller than twice the height of their suspension over the grcund, then
it is possible to demonstrate that the differences in potentials of the wire net
and the solid metallic surface with the same dimensions can be determined basically

by the difference between the potentials of one ccnductor and a solid plate whese

width is equal to the distance between the conductcrs in the system. The
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czpacitance I the wire curtain relative to the ground is expressed in the fol-
lowing mannesr:

1 -
~ - i3
C - p T

——-'»-';".".-"‘
Ca H 2ar

whers Cy is the capacitance cf the solid metallic surface having the shape of &

+ire curtain, and 1, d, and r are respectively the ovarall leagth of all ccnductors

o

in the curtain, the distance between the cenductors, and the radivs of the croszs

sectional area cf the conductors expressed in centimeters.

- . . 3 D
The capacitance of the solid metellic surface with a surface area S="R<[cm

disposed parallel to the ground surface at a heignt of h [em], is determined ac-

pos § : ol
i P w3l 9) ,
14 Qo a '

-ois last formula may be used both for curtains in the shape cof a dis

x*

, as
well as fcr curtains in the shape of convex polvzons. With a curiain rectangular

T
form, it is necessary that the dimensions of its sides differ frcm each other by

o

ot morz taan three to four cimes. Fcr the six-pointed star in rig. 2, the radius

{.
rh

the described circle, equal to RO, should be taken as R=0.825-HO in formula

). -

—~
O

The expraessions cited above make it possible to easily calculate the capaci-
tance of the horizontal portion of an antenna. The antenna downlead capacitance
for the antennas being considered here is, as a rule, quite negligible in compari-
son with the capacitance of the horizontal portion. However, its value is aeces-
sary for calculating the antenna feed impedance. It is possible to show that the
influence of the charges of a greatly extended horizontal antenna portion reduces
the downlead capacitance by twofold in comparison with the value calculated taking
into account the influence of the horizontal portion. In this way, the antenna

downlead capacitance for umbrella antennas is:

IThe height of the antenna curtain is determined in the following manner:
- for umbrz2lla antennas:

. for rectangular curtains: =~ T

2 2
"’H'—T’.HA—HP‘-.\:-%TSH

Here, .: and _.; are the conductor sags for the curtains (see Figs. 1-3). The
formulas have been derived with the presumption that the antenna wires are
twisted according to a parabolic principle.




where h_ 1s the dcwnlead length, cm, and L is the cross sectional area radius

a cvlinc¢rical downlead. 1If a downlead is made of n conductors with a radius
s : : : . PR n

of r, disposed in a circle with radius R, then rO=R v nr .

R

~

For 3lcz antennas, the downlead capacitance is determined by the expression:

ndt nie 2

The natural wavelength of the antenna in a first approximation is written in

the form:

SRR R RN i
o 220 =

c he capacitance of the antenna'shorizontal portion. This formula is

rr

where L. is
derived with the assumption that the antenna inductance is determined by its down-
lead. It is necessary tc use long-line theory for the precise determination of

an antenna's natural wavelength and its reactive capacitance.

Calculation of the Operational Antenma Height Taking into Account the
Horizontal Curtain Suspension and the Counterphase Excitation c¢f the
Supporting Metal Mass

In deteraining the operatiornal height for LF and VLF antennas, it is necessary
to taka2 into account the distribution of capacitance throughout the whole system
between its herizontal and vertical parts, as well as the influence of the wire
suspension of the horizontal parts and the currents excited in the supporting

structures of the antennas.

If we assume that the shape of the conductors forming the antenna is para-
bolic, and the wire suspension sag is significantly less than its total length,
then for T-shaped and slot antennas the operational height is determined by the

expression:

hy=1H=1d, A — S %‘.\, A = 2

by




s&zs n e horizontal curtoin dn twermutually

‘ For an umbrella antenna with an upner nart in the form of a cone with a large

t.oe apex:

2 . [APIN -
Ve -'L-":"—Hz"":‘i-——\x7'1"‘—"—! {14y
! : N

where H; is the central mast height, H, is the height of periphery nasts (normally

0.3 Hyj, 2y is the vertical suspensicn sag of the radial wires, and 42 is the

vertical suspension sag of the perithery wire ropes between the peripheral masts.

9 .

) In practical applications of antenna equipment, it is a variant of the sys-
tem's constructien, accerding to which the masts and the guy-wires supporting them,

are zrounded. The mast with guv-wires in this case forms a nonhomogeneous line,

kN
o
0
»
Y
.
"y
)—:.
o
s
o
)

apacitance decreases according to an increase in the distance from
the ground to the cross section under consicderation. The dependency of the driv-

.

¢ ing capacitance C; on the mast heizht may be approximated by an equation of the

C, = Cnﬂ l— j;*) . (15

where C;5 is the driving capacitance of the mast with guv-wires in its foundation,
i H is the mast height, and x is the distance from the mast foundation to the cress
7 sectionzl area under ccnsideraticn. The degree indicator n cannot be preciselyw
calculated; however, for masts with three surfaces of guy-wires, disposed at a

® anzle to ths mast column, the value of n, as calculations have shown, can be

45
taken equal to 2. For grcundaed masts with insulated guy-wires, n should be takan

equal to O. :

|20
¥

Taking a grounded mast as a receiving antenna, around which an electrical eid
N . oy 2 - : . . . . . .
with voltage E is distributed,- and using the reciprocity principle, it is possible

to demonstrate that the distribution of charge excited by the antenna field in a

‘This formula and the subsequent ones were derived under the assumption that the
heignts of the grounding supports are small in comparison with the wavelength.
The r..ural wavelength of the grounded masts with their guy-wires is about 3.5-H.
For this reason, the cited formulas may be used if the working wavelength is
greater than 7-H.
2for antennas with a greatly extended horizontal portion, it is possible to take

d : £ as a constant magnitude.

10
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where v UM - is the wave number, and * = —— 1is the available

H

cazpacitance in the nast with guy-wires, which can be determined by means of inte-

. grating (13).

As model measurements have shown, the available capacitance of mast with
Zuv-wires depends dasically cn the dimensions of the guy-wires. For masts with
three to five tiers of guy-wires disposed in three layers 2t an angle of 45° to
the mast cclumn, the capacitance Cp, may be found according to the following semi- %

empirical formula:

where r is the radius cf the guy-wire cross section. Al dimensions are ex-

)Y

: pressed in centimeters.

The operational mast height, with respect to the current in its fcuandation, ]

is determined by integrating expression (16), and amounting to:
" i
== b
- n-3

In this way, all necessary data for calculating the operational antenna .
height taking into account the currents excited by the antenna in the grounded

masts are determined.

: With a voltage U cn the antenna, the current in its foundation is:

7 ixCy L1
A 3 '

If the operational antenna height is equal to }Exwithout taking into account

the influence of the mast, the resulting operational height h& can bte found fron

lror grounded masts with insulated guy-wires,

where r .. is the equivalent radius of the mast column cross section.

<p
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Substituting the value of I, from formula (13), Iy frem formula (16), arnd

=

22 grounced masts in an antenna system also increase

th2 srstem's capacitance; this may be found from the fellowing expression:

whnere C. ig cthe zntenna caracitance taking into acccount the ianfluence of grounded

4
-

b

If of the overall number of grounded masts N, i} masts are peripheral masts,

and X; masts are disposad on the interior of the antenna curtain, then for the

HEi=0

for the internal masts HEi'O.75 U. These rela-
onships are derivec with the assumption that the peripheral masts are dispesed

U
o
o

4]

o

[*%

peripheral mast

7]

[N

t

at a distance on the order of 0.1°Y% from the antenna curtain, andé cthat the capaci-
tance of the wire antenna curtain is abcut 0.75 of the capacitance of the same xind

of curtain, but cne made from a solid metal surface.

On the basis of what has been cutlined above, we have:

v
1 U (56N, 0 751,
+ VA LR, 24)
‘\ d L .‘V:~.~l2

T

Fer the antenna systems illustrated in Figs. 1 to 3, h =0.75.H; hi 0.9
h=0.675H; C'A=l.03 CA' For this situation, the distance between masts is taken
to be equal to twice the height, and the suspension sag of the wires irn the an-

tenna curtain Is about 0.15-d; the downlead capacitance is atout 5% of the capaci-

tance of the horizental portion.

e e e s

o
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As the distance between the ccnductor wires in the kinds of artennas under
consideration here are, as a rule, many times greater than the conductor wire
diameters, the averagze vcltage zradient along the conductor wires of the horizontal

porticn of the antenna can be expressed as:

N
o — 'L:'mﬂc'.".'v! -
A t2h
' _u- [T ]
where _ . is the overall lenzta ¢f all conductor wires in the horizontal pocrticn.
r 2 p

The average voltage gradient on the conductor wires in the vertical portion
cf the anteana can also be determined according to formula (24), if the inZex r

is substirured by h and equations (10) or (i1) are used.

In addition to <he dielectric strenzth cf the basic mass of conducting wires

5v oequation (24), it is aecessarv to calculate the dielectric strengtn
J 1 J

disposed near the ground or near the metal grounded supports. Thus, the well- /:
wncwn expression following may be used for the voltage gradient of peripheral ccn-
ductcr wires in the horizontal porticn:

(9

E= _ :

If a peripheral cencducting wire is located near the groundecd mast, the gradi-

nt can te calculated in the following manner [18]:

R R
“":p

where R is tha distance from the conducting wire to the mast, and Tep is the aver~

age radius of the mast cross secticen.

In assessing the dielectric strengtn of the periphery conducting wires, it is

necessary to take the greatest of the values derived.

For a dewnlead composed of n conducting wires disposed around a grounded mast,

the voltage gradient should be determined according to the folleowing formula:




where R is the distance from the downlead conducting wires to> the mast axis.

t is possible to use formula (27) also when a=l; in this case, it is suit-
able for calculating the gradient on the downlead conducting wires of slot antennas
that are disposed near gzrounded mascts.

The voltage gracient on conductirng wires of a distributer fezeder for slot
antennas 1s expressed thusly:

e

22 area of the circle over whicn n feeder conducting wires are dis-

=
w
"
[41]
123}
[ 4
)
T

U¥]
[}
w
[0
L

In evaluating an antenna's dielectric scrength, it must be taken into con-

sideration that the breakdown woltage gracient fer air is, under normal atmespheric
onditions, about 21.2 EEf;qu. The voltage gradient at which corona losses begin
in moist air is about ld efi;kv. ror this reason, in antenna designing, a

working voltaze is chesen ir such a wav that th

23

e maximum voltage zradient cn the
concducting wires will be less than the value indicated above.

E]

intenna insulations must be fitted with electrostatic protacticn accessories
for the creation of uniform field distribution across the porcelair insulatcrs., The

voltage gradient on the construction elements in the accessories may te calculated

according to the formulas cited in [13]. The gradiesnt across the porcelain shculd
£f. kY {) kY ampl.)
cm p cm

2
not exceed 3.7

Calculating the Resistance tc Grounding Losses

The theory of groundings for LF antennas across the period of the first four
decades in the development of radio engineering was the least developed area in
radiaticn theory. The methods used and applied for calculating zroundings did not

reflect any galvanic physical substance to radiation processes and the distributiosn

14
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h of electromagnetic eaergw, and thevvizlded only the most approximate zand prelimi-

nary dJata on losses in the grournd.

\[ A substantial shift in grounding theory took place in 1935 with the method

of Brown [10], which hecdeveloped for calculating currents in a ground excited by

an antenna field. The Brown theory made it possible to determine the direction

Qi' - and magnitude of currents flowing in the ground, and in this way, it yielded a
basis for a more raticnal constructicn of grounding systems. The detailed data

of Brown, Louis, and Epstein {[10] that apreared subsequently in 1937 concerning

& the distribution of currzsnts in a greound with the presence of a grounding consti-
tuted from radially distributed conducting wires, occasioned a considerable simpli-
fication and faciliration in investigations conceraning this problem. Hewever,
Brown's assumptions and allowances did not make it possible to determine the ab- |

solute magnitude of losses.

Tae basic idea underlining hkis theory consists in the rfollowing. It is as-
, ;- - : ._C
sumed that a ground is an ideal conductor, and frem the ecguation 1=Z;'H, where H
is determined according to the thecxry of the distribution of electromagnetic waves

for a vertical radiator, the surface current density in the ground may be found.

It is further assumed that with a finite, but ground of sufficiently high

conductivity, the earth current will remain practically the same (subsequentl
7 P y q Y,

this was experimentally confirmed for relatively srall distances from an antenna).

In this way, knowing the conductivity of the ground and the current magni-
tude, it is possibls tc calculate losses in each volume element of ground surface.
However, when these losses are integrated across the whole ground surface taking
into account the finite depth of current penetration into the earth, it turns out

that the expression for losses goes to infinitv,

This result is completelyv explicable if it be taken into account that the

overall current induced in an ideally conducting ground, at an infinite distance :

from the antenna, goes to a finite magnitude. Cn the strength of these reasonms,
Brown, Louis, and Epstein were forced, in their comparisons of various grounding

systems, to limit the summing of losses to the limits of the grcunding systems

considered.




an proposed o mithod of dividing an

1 electromagnetic field of anteunnas inte  cemponent inducticns and radiaticrns;

this nethod made I:f possible to avoid the complicaticns cited above and to fiad
i
‘ an absolute value for the losses. The components of the field current in the ;

ground excitad by the induction field and the racdiation f£ield, as with the field
componencts taemsslves, are shifted through a phase of 90°.  On the strength of

this, ground losses caused by th2se currents can e algebraically summed. The

component radiztion current, equal o zero in the antenna foundation, increases

with the distance and approaches a constant limit at infinicy. e component i
e .

b induction currens, aqual in the foundaticn to the antermna fiald current, drops

S

off with distance a.d _,-.es to zero at inifinicy

Ground lesses from the first currant compenent determine tne nature of the
attznuacion <f leciromagnetic waves in their dissemiration and are dependent
voon ol il parameters. TIhe grouncding arrangsment has nc substantial
influznce on cthese lLosses, as it occuples a comparatively small area near the

antenna witl 7{nimal values for the radiation current component.

Tre second field component 1s ccnnected directly with the antenna current /1

and determined by the Biot-Savart Law. Ground losses caused by this ccmponent

are usually called "grounding losses.” The metallization of the ground near an
P g
2

s

antenna snarply recuces these losses. Integrating them across tne whole surface

rom the foundaticn of the antenna to infinity, taking intc account only the secund

"

field component, it is possible to derive an expression for calculating resistanc

to ground losses.

In 1944, M. I. Kentorovich and N. S. Beschastnov sugzgested a method for cal-
culating ground losses [12] based on the calculaticn of antenna capacitance by
means of thne nmirror reflection of the antenna and its counterpoise in the ground,
and possessing arbitrary parameters.: In 1946, S. I. Nadenenko [11] suggested
summing the ground losses from the field current in the half-wave radius, for cal-
culating ground resistance, beginning with the assumption that the induction fields

beyond cthe limits of this zone are nc longer great.

lWith the existence of finite soil conductivity, the antenna capacitance turas
out to be complex, and for this its imaginary component makes it possible to cal-
culate the antenna resistance caused by ground losses.

o

16
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ame vear, on the basis of the Hansen and Zeckerley theory [13],

ecise method for calculating the antenna impedance was ceveloped, with a

w
'J
ry
o

precision up to 2 given current distribution in the antenna and a given grounding
[14]. In particular, it was demonstrated that if the antenna dimensions and the
grounding dimensions are small in comparison with the wavelength in the soil, the
rzsults of a precise calculational method will agree with the results of M. I.
Yontorovich's and N. S. Beschastnov's approximative method. At the sane time,
the resistance to grounc losses turns out to be nct dependent on frequency (for

the case when the displacement currents in the scil are small in ccmparison with

If, hecwsver, the antenna dimensions and the grounding dimensions are large
in comparison with the wavelength in the soil (which does not exclude the pos-
sibilicv of their being small in comparison with the wavelength in the air), then
cthe resistance to ground losses is proportional tc the vE (where f is frequency),

that is, the nature of this phenomenon is conditicned by the skin-effect phenomenon,

all of which vindicates the Brown method of calculaticn. 1In addition to this, as
it emerges from the precise method of calculation, ground losses which lower the
antenna efficiency coefficient are caused only by its inducticn fields. This is

the basis of M. S. Newman's idea explained above.

In 1954 and 1938, Wait and Pope suggested a method for determining the an-
tenna feed impedance, taking into account the finite conductivity of the ground;
the method was based on using the Lorenz lemma. The essence of this method con-
sists in the following. The antenna feed impedance, taking into account the fin-
ite concuctivity of the ground, is taken as the sum of antenna feed impedance as-
suming ideal ground conductivity and of a small accessory impedance taking into
account its finite conductivity. This latter is expressed as the ratio of incuced
emf as a result of the finite conductivity to the current in the antenna founda-

tion. In agreement with the Lorenz lemma, the induced emf is determined as the

integral of the current distribution function for an ideally conducting ground,
integrated across the whole ground surface (with the ideally conductive ground
normalized for a current in the antenna base), and multiplied by the tangential
value of the electrical field at the ground surface arising with its finite

conductivity. The tangential field value at the ground surface is found by means

of multinlying the current in the ground (assuming that its conductivity is ideal)




by the surfacs Impecance of the acrtual zrouand surfacs. 3evond the limits of the

3]

zrounding, this latter may be determined only by means of soil parameters accord-
ing to skin-effect formulas, and within the grounding limits, as the pzarallel

joining of the accual ground impedance and the metallic wire mesh.

It is necessary tc note that the accessory and antenna impedance, calculated

1

according tc the Wait method, turns out to be finite as a result of the finite -

4

ground conductivity, and this makes this method quite convenient for practical

applications.

In a series of works concerned with the design of grounding systems, only

the loss component
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same time, calculations have demonstrated that losses in the grounding zone with i
a large number of conducting wires increase, zs a rule,with increases in soil con-
ductivity and decrzase with dzcreases in soil conductivity. Frem this, it has

1.

been concluded that it is advisable to set up antennas in a place where scil con-

ductivity in the grounding zone is small, anc bevond the limits of this zone, where it

is great [5]. However, the use of the expressions for ground surface impedance

e

s justified only in the case when the antenna and grounding dimensions are zreat

in comparisor to the wavelzangth in the soil. In calculatifions for antennas workingz

in a range of vervy low frequencizs, however, where the distances bdectween the
grounding conducting wires are, as a rule, less than the wavelensths in the soil,

it is necessarv tc take into account, in addition, the supplementary resistance

to ground losses, which does not depend on frequency and has the character of re-

sistance in the grounding electrode wires for a diresct current grounding electrode

"12, 14, 17]. Because this resistance is inversely proportional tc s2il conduc-

tivity, an antenna site with high soil conductivity both in the grounding zone es

well as beyond its limits must be selected.

In those cases, when for any of a number of reascns, soil conductivity in
the grounding zone is small, it is necessary to select a number cf grounding con-
ducting wires, such that the specific gravity of the supplementary ground losses,
caused by the grounding wire structure, is sufficiently small, and such that the
influence of conductiviry variations in the upper soil level under varring nete-

orological conditions would have no influence on antenna parameters.

18
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in the basis of what has been explained above, it is possible to derive

v simple expressions fcr calculating the resistance to

antennas with greatls developad horizomtal parts:

1 e s a6

or the case when b<<]l, the formula is simplified,and the following form is

n_ -- antenna operational height, m;

¢ == grounding radius, m;

n -- number of concuctors in the radial grounding;

r3 -- radius of grounding conductor cross sectional area, m; /1
g =-- so0il conductance, S/m; ]
L -- wavelength, m;

b == ratio of reactive impedance of the wire grid to active impedance

of the ground surface.

Because the depth of current penetration into the ground, in accordance
with skin-effect theory, is several tens of meters for VLF waves, in calculating
the first member in expressions (29) and (30), the value of ¢ mavy be taken to be
independent of meteorological factors. The second component of the losses does
not depend on frequency and is determined by the value of ¢ at depths equal ap-
proximately to the distance between the grounding conductors. For this reason,
it is advisable, when this is being computed, to take the smallest value of ¢

for a given locale for frozen soil or dry weather.

Calculating the Antenna Efficiency Coefficient

]

As Hansen and Beckerley cemonstrated {13], the radiation resistance of

[}
-
e
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The antenna efficiency coefficient, from the point of view of the field

F. ~re

tage of the ground wavae created by it is:

b

Wicth a grounding systenm that has been well constructed, the value of n can
Se larger than unity; this has been observed several times in measurements <o

n
on actual antenna equipment. This kind of result is not absurd, insofar as the

. value of n in this determiration is the cocefficient of antenna gain.

H 1~

Special Features in Calculations for Xulti-Element Antennas i

If an aatenna system 1s composed of several, for instance, p elements, then
in calculations for the whole system it is necessary to begin with the overall
surfzce area of the horizontal curtains and to use expression (%). The capaci-
tance of one element is a simple division of available capacitance v ». In this ;
wav, the reciprocal and mutual influences between the anienna system elements
will »e accounted for in computing the reactive component of its feed impedance.

The radiation resistance of each element is computed according to the Rudenberg J

formula with the addition of all impedances from the other elements to be inserted. :

The inserted impedance from one element for the case when the distance between

elements is d<0.25), is determined acceording to the follcwing simple formula:

Py K242 \
- ~ = 1333
7 H 2
“u 2
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If the overzll surface arza of the grounding system is equal to S, then
wizh a numter 2% radial grounding elzctrodes p, each of which consists of n con~

cucting wires, the ect to the overall current in all
the downleads lated according to the following for-

mulas:
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Irn conclusion, it should be stressed tinat the grounded masts with guy-wires

must also have radial groundings with a relatively small number of conducting

be connected with the cverall antenna grounding sy

wires, and they must b
losses in these grcundings can be calculated according to the same formulas, if

is taken equal to 1 _ in expression (18), znd the current in the mast Zounda-

-
~~

ticn is calculated according to formula (16).
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R. 3. Yaganev, IZ. I, Matsenelenbaurx

S tais article, new zinds of ansmission lines for millimetric and sub- '
nill {metric waves are <xanined -- quas;—cptlcal reflecting beam waveguide lines
and rerflecting beam waveguide lines with lenses.

In the range of decimetri: and cantimetric waves, the most universally used
wavezuld: lines use, for the mosc part, rectaagular waveguides with a wave of
, the cross section of a common single-wave wavezuide
is wverv small, and for this reagen, losses in its side walls increase greatly.
At =1 om, it Is extracrainarily difficult to make a single~wave, rectangular

waveguide. Attenuaticn in this zxind of waveguide is about 10 <&3/m.

¢ wo basic wzrs Ior creating 2ffective millimetric carriers. It is
- broad (in comparison with L), that Is, multi-wave waveguides
manufactured with great care, in order tha:t the unavoidable transformaticn pro-

iesses cf tle principal wave into nigher order waves will be sufficiently small i

them; or it is;ossi:le tocreate quasi-optical reflecting bSeam lines or reflecting
“eam lines emploving lenses, consisting 2f a series of equidistant lenses or
turved miryors that conduct the wave bundle. The development of thes2 kinds of
lines began about Zfive or six vears azo ({1}, [2], see also the overview in [3]).
In describing millimetric wave propagation in rafl:acting deam alrrcr or lens
lines, it is converien:s to use the noticn 2f an elementary bundle. 'Zle tary
oundle'" 15 the name for a prepazating electromagnetic wave occupving a regionm of

space with an approximately cylindrical shape. The field of the bundle has a
r

finite value at r<*s, where r is the cvlindrical zoordinate, and r_ is the tundle
parameter, falling away exponentiallwv at

r>r . Zach bundle is characterized oy
a parameter r, and two pole numbers indicating the dependency of
~

t
on the azimuth argle C and on the radius r. More preciszsly stated, the field

veltage oun the middle plane is:

o, r.f™Mmoe - -—

-
and the surface cf equivalent phases is flat. EHere, L  is a sco-called laguerre




At ‘o -~ - Rk
ulcag, uEa

5 The larger the index ¢ of the L
1

tive rundle widgh, that is, i

the effzctive eunponential field <Zecrease in a radial

fiold distribution along the bundle axis (along the z axis) is determined
by the Maxwell equatious. e plane, z=const., for

According to the distance from th
pression (1) aponlies, the parameter (th

r_ increasss at is, the bundle ex-
<

pands) and at the same time, the surface of
A

equivalent phases becomes curved.
it takes on the form of a spherical section, wnose center of
the left of the central plane (Fig. 1). To the left of this

of equivalent phases ras the form of a concave sphere. All
is symmetrical with respect to the central plane. The £field amplitude

2t r=0 13 shown by the broken line.
Cantral TN TN
\ 4 )
~..~ Plane : 4 .
P \ \
-- ; x '\
\ \ \ .
v 5 \
‘ | \
' \ ! \
. | g \ \
‘/\ \ ' ' i

/ :\ \ _g;:fstCentral

/ \ X7 plane

Fig. 1. An elementary bundle with indices ==9, g=2.

in this way, 31 bundle is a quite complex wave: that is, it converges to

to the right of it,
the field which is nonhomogeneous across a cross section.

the left of the central plane, and diverzes with respect to

It is pessible /1l
to imagine it as an aggregate of flat waves propagated in different directicas,

with these directions forming a small cone around the z-axis. A variation in the

field structure of the bundle with the propagation of

the bundle alcng the axis
represents a typically diffractional effect, that is,

an effect connected with
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of the bundie remains finite, that is, the bundle is not contracted to a point.
nis size dimension r, is proportional tc ¢ -, whict is tvpical for a series
of diffraction phenvmena, for instance, for the passage 9f a wave Zhrough the
focus 2f an optical system. The apalogy herween this phenomencn and the nature

of the bundle field near the central plane is quite far-reaching.

bundles cannet exist by themsslves; dependi rom the central

vergzing bundle
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into a ccanverging one, lenses, mirr
e of these rapresents a quasi-cptical line. If the surface of equivalent
phases before it reaches a 1l
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descrived here.

Phase correcticn by successive lenses and mirrors completel:r recenerates the
sundle. It beccmes identical to the bundle zs it passed through the preceding

phase correcticn. In this way, the swvstem of phase ccrrections guidss the dundle

and reiterates it as it passes through each correction phase,

Phiase correction is a gecmetric ccncept. If the bundle fia2ld, as it ap-
prcaches the correction phase, is characterized by a magnitude u(x, »)
field of the exiting bundle is characterized by a magnitude uix, ;:)ei3 .
The furnction o(x, y) is determined bv the phase shift of a ray between tha point
with coordinates (x, y) as it enters the correction and the point with the same
coordinates as it exits from it. This kind c¢f calculation for phase correction
has the same order of precision as geometrico-optical calculativms in paraxial
approximations. In this calculation, it is sufficient to account for the trans-
formation in phase distributicn; in geometric problems, a knowledge of the phase
would be sufficient for determining the directicn of the ravs (as normal to the

surfaces of equivalent phases), and it would not be necessary to account for wave

refraction at the boundaries in an explicit form.
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e nozion of buncdles with principally diffractional natures is used in

quasi-cptics to Jdescribe wave propagation inm a free space. Ia this way, in crler
ses in gquasi-optical lines, it is necessary

to rake up toth ometrico-optical (phase correcticn), as wel. as diffractioral

{wave bundle) concepts.

The process2s of propagating electromagnetic waves in quasi-optical lines

may be viewed from another side as well., We shall describe a bundie in general
as tne naturai wave of a svstem of identical, equidistant phase correctors. The

field discribution of a natural wave across a cross sectional area is repeated
with a precision to within a constant (complex) factor after it passes through
the interval between lenses and passes through a lens. The constant factor deter-
mines the phase shift cf the natural wave and its amplitude decrease. Field dis~
trituticn after each lens is reiterated with a precision ts within the phase
snift, nct dependent on the coordinates in the plane of the crocss section. The
2lementarr bundles descrited above ars natural waves in a2 line cemposed of an
infinite number of quadratic correctors, trat is, correcters whese phase shifr o
is proportional to the square of the radius r<. The module of the complex facter
in this case is equal to unity. Buadles with different indices (g, @) are propa-
gated in a quasi-optical line with an infinite number of correctors independent
of each other. The energy flux in any wave entering intc the line is equal to
the sum of energy fluxes of the natural waves. The variable L in expression (1)
is propertional to the square root of the product of the distance L between cor-

recters and the wavelength A.

Natural waves (repeating bundles) also exist in svstems with finite numbers
of correctors, that is, with correctors in absorption screens (Fig. 2). If the
correctors are quadratic, the fieids of the natural waves are similar to elementary
bundles, with the excepticn however, that their energies decrease with propaga~
tion. is is connected with the fact that a portion of the energy exiting frem
a given lens does not in general reach a subsequent lens; this leads to the cccur-
rence of radiational (they are sometimes called "diffractional") losses. For main-
taining repeating bundlies in these kinds of systems, in additicn to phase correc-
tors that adjust phase distribution according to the bundle cross section within

the aperture limits, an important role is also played by absorption screens. These

latter remov~ that pertion of a bundie which does not correspond tc the field as

/-
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_ it exits from a preceding zorrection phase.
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is ratig,

ie, the fewer wil

In the case under consideration nere, t
2.5, thus the losses are very

e larger value of

concentrated near the ax
civnal losses.

oy
1

. . oa .
he ratio £~ is equal <o
s
small, and the field amplituces with output
cnly slightly from each other.

two nesighbering lenses diffszr

distributions are reiterated:
b7 the screen.

The field aperture
the portion of the bundle f£ield at r>a is absorbed
The broken line shows the £field amplitude at r=0. TFrom a com-

parison of Fig. 1 and Fig. 2, it follows that with

he existence of losses, the
tundle i3 narrowest not midway between correction phases, but nearer the preced-
ing correction phase.

A mathematical apparatus of integral equaticns is used for calculating radi-
ational losses

for the output

of a natural wave 1in systems with restricted correctors.
from one corrector 1s

taken as an unknown

The field

According to

functien.

T
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13 imtoy & supsequent corréection phase mar be determined frem an

approximative solution {according co the Huygens principle) cof a Maxwell equation.
ielc as it exits £rom this latter corrector mzy be determiped by multiplying
by niv(x,y)‘ It should differ from the cutput fizld freom the first corrector by
cnly the constant facter. This leads to a homogeneous Fredholm integral equation

oI tha szcond xind, which may te written in the following manner for the desired

fileld: . s f
7l 1y e T 29N iy . {
il vy ce }:‘..\, WAy T ) dydy, e

whare:

The valuz2 » 1s an 2izenvalue for this equaticn. It is equal to the change
in field as the bundle moves from corrector to corrector. Radiaticnal losses

are = ¢ - The bundle phase shift is determined by the argument of the eigen-
the equatien eigenfunction.

Depending on the type of phase correctiscn :{x, v), the form of the bundle
(natural wave) also changes, as well as its radiational losses. There are many
svstems which mawv carry a wave with small radiational losses. Up to the present
time, however, with no solutions for equation (2), it is impossible to determine
whether or not a given system, specifying an apsrture § and with a magnituce L
and function ¢, will assure small lcsses. In particular, all systems of quadratic
correctors, whose focal lengths fall within the limits L/4<f<», will carry a wave
with aillowable radiaticnal losses. The dependency between these lcsses and the
value v=L/2f for some values of the wvariable ¢ is shown in Fig. 3. It is apparent
that the fewest losses occur in a system with confocal correctors {v=1). The

curves are symmetrical with respect to the straight line v=1.

A common, thin dielectric lens is a phase corrector. In paraxial approxima-~
tion, it carries out a quadratic correction, while the spherical, convex surface

of the equivalent bundle phases is transfcrmed into a concave spherical surface.

1

The new radius of curvature is determined according to the "lens rule," well known

in optical geometry.

For the calculation of lens systems in optical geometry, concepts of 'point

scurce" and "point image' are used. Each point in space for obiects, according

R . e o ]
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e noetiens of Gaussian optics, corresponds to a point In space for images.

ezl oprical syste

g
1 inga 1 + of all =35 ideal svste Without abher=as<an
lensas are closest of all £: ideal svstems without adbberzsations.

1 quasi- ics, ther ren 2 ical requirsments disallowing abberra~
In quasi-optics, there are no geometr 1l requirsments disallowing abberr
tions, at least in regular svstems (equidisrant, identical, coaxizl correctors).
in other words, it is not at all obligatory that a ccrrector transicrm a spherical

i

bundle

rh

ato a spherical fronmt ¢

Faa

front of an incident z Sundle eniting from the

K}

corrector. Also possible, for example, are nonquadr
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c o ctions. lenses nav (e
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have the form of bodies of rotation, whose formative

~J

a

a3

re straight line sec-

v
n

t
tions (that is, a corrector as a circular cone) or a broken polygonal line (for

example, a corrector as a truncated cone).
pte,

The natural waves in a system consisting of nongquadratic lenses represent
significantly more complex wave bundles than the elementary bundle described sbuove.
By way of example, shown in Fig. 4 is the amplitude Jlistribution of the field of
a natural wave with the smailest indices and having minimal radiational losses

in a quasi-optical system which is a series of absorbing diaphragms (V=0 It

nay be seen from the figure that this wave is a wave bundle that is repeated at

every subsequent aperture, while the bundle amplitude decrzases.

In the lenses, which are small dielectric wafers of variable thickness, the

phase correction is carried cut as a result of differeaces in the optical paths
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a shape that 1if they ere turned toward the axis of the bundle at the Bruster

angle, the phase correction introduced by them is equal to the correcticn induced
by normal spherical lenses, and reflection from the surfaces is removed. The /e

rom a confocal line is shcwn in Figz. 5 (lens radius 8.% cm, wave-

Hh

output signal
length S mm, distance between lenses 175 cm), substituting a straight spherical
lens made of plexiglass (refractive incex n=1.6, focal distance 82.5 cm), with

a Bruster lens inclined toward the system axis at various angles. If the incline
angle 1s close to rg=arc tge'n, then with this kind of substitution, a substantial

increase : i t0o reduction of lans : Lectic is

It is not possible to do away with dielectric absorpticn; in addition, with

a decrease in wavelength, the tangent of the lcss angle in existing dielectrics

increases. In ccnnection with this, at present the use c¢f focusing, reflecting

mirrors, suggested in the cited works [3, 6], seems to be promising. Phase cor-

rection occurs as a result of the fact that ravs reflected from various points
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on Ehe wirror describe 4 Mirrocs, in discincoion to lensas, do
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ror realizes o paase corraction of the bundle
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lane not perpendicular tc the bundle, nevertheless it is possible to con-
struct mirrcrs which will carry bundles in a symmetrical fashion with respect to
the axis. They nmust have the shape of a surface section of an ellipsoid bedy of

rotation. & burndle

[P

2 a systen of mirror-ellipsoids is the same as in a syvstex

cf quadratic lenses. However, simpler forms of mirrors (spherical sections) are
also quite acceptable; :these possess astigmatism in the optical geometrical sense.
These kinds of correctors will conduct bundles of a somewhat more complex frpe

-

than those pictured in Fig. 1. In the cross secticn of a tundle in a line with
e¢quivalent amplitudes, the shape will not be in the form of a circle but in the
form of ellipses. The formation of a bundle is determined by the razio between
the radius of curvature of the mirror surface and the distance tetween mirrors.
In particular, it is possible to comnstruct a quasi-optisal line, in which the am-
plitude distribution of the bundle field near the mirrors is symmetrical with

respect to the axis [7].

A quasi-optical mirror line will be more compact if the mirrors are joined
together in pairs (a periscope system, Fiz. 6). If the distance L between mir- 'z
rors in pairs is very nuch smaller than the radius of the mirror o, the phase
correction of the dcouble mirror system will be equal to the sum of corrections

for the component mirrors.

32
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"1z. 5. A periscope system consisting of
spherical mirrors.

7 evaluaticn of the line, it is necessary to cetermine the radi-
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he lens material or ohmic losses with reflection off
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2 of the mirrors, losses at the transmitting and receiving ends of the lines (the

nzral the balance c¢f losses, the shorter is the line), and
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e zhe losses in transfsrmation of the wave types. Transformation takes place as a
result of imprecisions in manufacture and justifying, as well as as a result of

variaticns over time in the positicnings of the lenmses or mirrors.

s necessary above all to sample the variable

[

i In calculatiosns for a line, it

¢ which determines the radiational losses of the natural waves. It should not

———

csses in the principal wave are not great, and it

fur

pe small, in order that the

Tust nct be especially larze, in order that the line'sself-filtration wechanism

nct be too small; salf-filtration is the eradication of higher crder waves, aris-
ing as a result of axcitations due to irregularities, from ocut of the line. In

R o -~

accordance with this, a value for the variable ¢ is chosen between 1.5 7and 2

for lines consisting of quadratic correctors.

With correctors of these sizes, radiational lcsses in the principal wave

| are an insignificant fraction cof the overall losses. Losses due to excitation
cannot be reduced appreciably beyond 1 dB. Losses to the correctors due to di-
electric absorption and refiection off the surfaces are approximately 0.C5 d3 in
! matched lenses and .15 dB in unmatched lenses [2, 8]. Losses due to reflection
- £f of aluminum mirrors amount to about 0.013 dB in a mirror line if the electric
field vector in the bundle is perpendicular to the incidence plane, and about
J.02 dB if this vector lies in the incidence plane [9]. Transformation losses

in a long line are, cf course, most substantial, if line losses due to dielectric 3

absorption or metal absorption are quite small.
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is incilent on a deformed cr displaced phase corrector. Diszlacement or deforma-
tion in the corrsctor disturhs the id phase front coming after it., & disturbed

b2 expanded into a series of undisturbed natural waves, with the expan-

n
fficients as coefficients of connection between the waves and conditioned

sion coe
by the defermatiocns or displacements in the correctors. As calculations have
shewn [10], for a lens line, lems displazement in the plane nerpendicular to the

5., ian which each corrector comsists of twe mirrors sleselv joined together.

If attenuation of a higher order vave arising as a result of irregularities
ith the degress of its axcitation, a statisticzl analysis

with the rotation of individual mirrors,

V- - 4)

s e db, <

In formulas (3-5), 6° is the mean square lens displacement in the plane per-
sendicular to the axis, and %% is the mean square rctation of the mirrors (in radi-
ans). In accordance with these formulas, for instance for a confocal Zens line
with parameters L=30 cm and A=1 mm, additioral losses on the corrector are 0.1 dB
with a mean squared lens displacement of v34=(G.7 mm. In a mirror line with the
same parameters, losses with a mean square deflection in a single mirror at an
angle of VEE;L', are also 0.1 d3 on the a=irror. In a periscope mirrcr line,
where the distance between the centers of the dcuble mirrors is L=3 cm, the same

losses will occur with an angle of incline in the double wmirror svstem of ve2=7¢'.
g Y

8y way of illustration of the gain derived from substituting a single mirror by a
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iollows that, all other condiciens being =2qual,

, icsses dus to transformation in a lens line are staller as the lens focal dis-
!
f tance f is greater. However, with increases in f ‘Yzt given L and a), radiaticnal
. . . . . - 1 : . -
losses in comparison with losses in a ccnfocal systim iIncrease. For this reason, Pl

it is of gzreat interest toc find a value for f which will give the least number

of ovarall losses (radiational lesses plus transformation leosses) at fixed a, L
with mean square displacement values v382. The relationship betwsen the optimal

value for the variable =L/2f and the mean square lens displacement at various

.
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iven. At 2=0, as may be expected, an optimum is achieved in a
confocal system, that is, at f=L/2. 1In Fig. 9, overzll lecsses in ths principa

.F wave in confocal lines andé 1ia lires with optimal variables are cited.

If the sysrten selif-filtration is smail, or in other words, the lens widtha
is zreat in comparison with the bundle width, then an investigation cf deformaticn
and cisplacement influences based on optical geometric analogies between a bund
and a ray are more effective., The movement of the center of the bundle in a line
with displacec lenses clbeys laws of paraxisl optics. Under these conditicns
(c»27), lens digplacement merely causes a shift in the tundle as a whole with res-
pect to the axis, and losses arise as a result of this only in the case whern the ;

i
buncdle apprcaches near the edge of the lens or gces beyvend it. At the same time,

e 2N
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Fiz. ¢. “verall losses in the zrincipal

2 e. This probability increases proportionally to the square
} root of the line. It will be the greatest when the focal length of the lenses

i is tha smallest. For example, in 2 line consisting of 53 lenses with a nean

zquara lens displacement equal to 0.7 mm, che possibility of projecting the bundie
ceyond tile limits of a circie with a radius ¢f 20 mm is equal to G.01.

A nmore cempliete analysis, one that would make it possitle <o estabiish the

[o8
(17
0.

(211

probabilities for certain kinds of fixzed losses in a given line, can be carr
3 out by means of machine simulation of the process of bundle precpagation in an

R ensemble line with an arbitrarvy displacement distribution,

Experiments cn the transmission of millimetric and sherter waves, up to light
waves, in open quasi-optical lines have cnly begun and are being carried ocut in
several countries. In the theoretical aspect as well, there are manv unclear
problems that are being subjected to study, but a preliminary examination of
these problems reveals pnromise in the ideas. It should be noted that in the case
of lines which are not very long (lines that are only a few times gzreater than

~

a“/A), lines made of ncnhomcgeneous corrsctors, which are pessiblyv simpler to
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TUE ODESICN COF LUTIHNA ARRAYS /ol

f the methods for an approximative synthesis of equidistant and non~
equidistant antenna arrayvs is analyzed; linear and planar arrays are examined.

Introduction

Recently, zreat atcention has been aiforced to problems in the theory and
practical apriications of antenna arrays. The importance of iinvestigations of
these kinds of antennas is determined for the most part by the fact that they
make it possible to control the radiaticn pattern diagram {directional pattern
diagram, directivity diagram) across a wide range by means of varying the signal
phase of each array element.

ications c¢f antenna arrays encoun-

C

i

Eowever, the advantages reallized from app o
ter substantial obstacles connected with the fact that in the formation of a
narrow radiation pattern diagran, a largze aperture is required, and consequently,
also a large number of array elements. In fact, as is well known, for generating
a narrow radiation pattern diagraxm that scans acress a brecad sector, with a small
ievel of side lobes, it is necessary to arranga the elements in the array at a
distance from each other nct exceeding %n If this condition is not fulfilled,
with a beam deflecticn at a certain angle, quite significant side lobes arise
with secondary peak values for the antenna array that are not always allowable.
However, this kind of condition is practically never fulfiiled, so that at the
same time, the required number cf elements in a planar array with a narrow radia-
tion pattern diagram reaches several tens of thousands. The construction »f
these kinds of antennas becomes a decidedly complex task, and their costs are
extraordinarily large. For this reason, the problem of developing controllable
radiation pattern diagrams of a determined shape by means of antenna arravs with
a restricted number of elements has become very important. Consequently, the
basic task in designing antenna arrays is the creation of the required directivity

diagrams with a minimum number of elements. The use of ncnequidistant arrays, r

that is, arravs with nonuniform placement spans between the elements on the antenna
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partura, vorrzat numger oI oprtssibilitdies in othis direcsticn. These xinds
oI antonna arrics mak: Lo possible no create radiation pattern dlagrams with a
suvstantiallv Jow Lovael of miror loces.

2.

tc the study cf the

The number 5f works that have been pudblished dedicate
various problems in the theorv of anterna arrays is quite large. Recently, a
seriss of woriks has anpeared showing studies carried out on nernequidistant antenna
n some of them, attempts were maie to Zevelop methods for designing
these winds of arrays; however, there is to the prasent no general theory for

the desizn of these winds of nonequidistant antenna arrays.

The methed for designing the kinds of antenna arrays analvzed in the present
workx makes it possiblie to determine relatively easily the placement of the antenna
radiatcrs, as well as the current magnitudes in the radiators that will assure

the generaticn c¢f radiation pattern diagrams sufficiently ciose to the required

7e shall examine 2t first methods for deriving a dztermined radiation patitern
diagram by means of equidistant arrays, and then we shall prcvide a scliution for

the same problem using nonequidistant arrays.

Planar Antanpna Arravs with a Required Achievable Radiation Pattern Diagram

&s 1s well known. the radiation pattern diggram of a system of discrete,
singly polarized radiators, arbitrarily placed in a plane, is expressed br the
follewing formula: . 4
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where Dn(G,v) is the radiation pattern diagram of an n-th radiator (the n-th

[l

ment) of an array; ¥ is the number of radiators; dn is the distance of the n-th
radiator up to an arbitrarily chosen point in the plane N, Y, taken as the zero
point for the cocrdinates and called the center cf the system (Fig. 1); Sn is the
angle between the direction towards the aiming point and :ne lines joining the

a

center of the system with the center of the radiator; 3, are the ccordinate

angzles of the aiming point.
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If the angular coordinate points of the placement of the n-th radiator are
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same plane ¥, ¥, and thus ®%=ju As & consequence, if we take dq cos té=xn, and
d sin u'= then:
n Tn
Dy, o= N D m, e TSy Iy J
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Formula (2) applies for any system of radiators, with an arbitrary shape,
disposed in a plane. In this case, if the array is ccanstituted of identical radi-
ators with the same radiation pattern diagrams D;(0,y), but differing from each

other in current amplitude and current phase, then:

D"”. - D ey /‘VF ei\’:m(v.!to« - ».,::n-t' ‘3’
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where F =E e "R are the complex factors characterizing the amplitude and phase

n n
of an n-th radiator.

The functions D(O,¥) and D:1(9,%) are taken to be known, and for that reason, {

the problem of designing a planar antenna array reduces to the determination

from expression (3) [or (2)] of the unknown factors F, and all the values of X,

and Ya* It is possible that this problem as well will not have a precise solu-

tion, because not every required diagram can be represented in the form of formula

(3) [or (2)].
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istance from point zero, the zers point of the coor

ator center for a beam lying in plane ¥, Y and being projected from the zer» peint

at an angle y. 1In this way, the radiation pattern disgram in the plane where

v=91 13 in agreement with a radiatiecn pattern diazgram of 2 linear array, whose

¥ r’
radiators are placed on the X, Y plane along a straight line y=y- at the points
T Sap .
un\J,J)- , Vo
Do = ""'D] e '1)\‘ g TR L, e . '

it follows freom this that the ceonditions for achieving a radiation pattern

z -

diagram, as well as the methods for finding a2 solution to the realizable diagrams

1 .

in planar arrays owst be the same as for linear arrays. we transform extressieon
¥ ¥

(3), and we arrange the cocrdinate svstem in such a way that th: abssiszses of the

. - 1. . Lt \ . -
two extreme points of the system are equal to -_- and = and the ordinates of
. . 1 iz . = . .
e two eXxtreme points are equal o -22 and 2 (Fig. 1). At the same time, we
2 2
shall select a scale Ior the radiating system in such a way that the raciatoers
o
are disposed in a square wiin sides equal to 2-. TFor zhls, we tzke %%xr=pq, and
, 1Tn Ty
27 e - co= ~L dipes G sa=m 2L Teialie s
——v_=v_. In additicn, let <% R : .
i2°non
D(E,v)

S07,0)

~— is called the array factor.
D1(3,%) - ’

The function R(z:,za)=

W
7
[

We shall fix one of the variables, for example z,, and take R(z,,z:)

function of the same variable z;:
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This expression is similar to the expression for the factor

array of radiators. Fixing z| in exactly the same way, we get:
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onseguently, the function R{z:,z;) must belong to whole, almost periodic,

O

inite dezree with indices ¢1s57 and o7 corresgonding to each of

a1}

functions of a

the variables z; and z». We shall denote the class of these kinds of functions
ovw 31 .
PR

across the array that precisely reproduces it can be determined by using a double
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In fact, changing the order of summation, we get:
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Her=, ~ad is the pericdic delta-function, equal to O for all y

—~ KL
70t equal to #ncn=0, 1, 2...). At the points y=in7w, it goes to infinity, while

'\' Sendus=; Consequently, f(x, y)=f(;p‘»)p)=?p52(0).

In this way, the function f£(x, y),determinable by means of the double series
(8), differs from thre field distributicn function across the array, which creates
the determined array factor R(zj,z»), only because of the presence of the factor

32(0). Ia what is to follow, this factor may be ignored.

If, however, the array factor does not beleng to the class 3' _ , then It
“1.02
is impossible tc reproduce precisely. For its approximate calculation, it is
necessary to approximate it preliminarily by means of a whole, almost periedic

function of finite degree.

Insofar as the methods for solving the problems of designing a planar array
are identical to methods for solving problems for linear arrays, we shall exanmine

linear rays first of all.
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Iz is necessary t) chucse the coefficients of ?P anl the numbder n in such
a way that the right-hand menmber of formula (9) is the fixad function Rfu) with

any fizad degree 5f accuracy.

-

we shall search for a solution in the following form:

:1‘! T 3 ,
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Substituting this =xpression into formula (¢), we find:
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The right-hand member of the derived expression contains an interpolated trig- /I

onometric peclynomial with equidistant interpolaticn ncdes. It is not difficult

to see that at the points u=p where p is a whole number:

2n+1?
<edn -
- Clunenn e
a2 Pwhen ' i
R ST 2 J
Consequently:
A {

_-‘__’ = M m 7

The properties of the interpolated polynomiai (11} have been studied quite
well (see [1]). As is well known, if R(u) is a whole furcticn, or a continuous,
periodic function with a period 2f 2+, satisfying the Dini tes:, then the inter-

solational series (11) with a limitless increase in n will uniformly ccnverge

alonz the whole axis to the function R{u).
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Consaguently, I1f R(u) 15 an intez-al functicn or a ceatinuous, period func-

tion satisiviag the Dini test, then 1%t mar Le rapresented approximately in the

Zorm of {11); a= th2 same tinme:
- "t - T
i) - T = l’ . T
-t el -

The degree of appreoximation of the assigred function of polynomial (11) de-
pends on the number n, that is, on the number of radiators. The larger n, the

more precisely the assigned radiation pattern diagram mav be determined.

In this fashion, then, there are serious limitations to a fixed radiation
pattern diagram. That is, it if is not an integral functicn and it does not
the Dini test, then with an increase in n, the right-hand member cf ex-
2 o

11) will not converge to functien R(u),and it is impossible to derive

diagram shculd be approximated befcrehand, zs3 this is demonstrated in [2], with

any arbitrary degree of accuracy by means of an intergral function of the form
& 1

U (Z)P‘ (Z) (k<2:n) where 7, (Z) is a pclynemial of degree x, U (2)—— . *
< ’ < F ‘ = ? o

after which this function should be represented approximately in \ n?
pp 2

the form of formula (1l). Thus, series (11) will converge to the functicn R{u).

It should be remarked, however, that series (11) is a periodic functicn of
the variable 2z with a period of 2n. Tor this reason, lcbes equal to the magni-
tude of the major lobe (so-called secondary peaks) should arise across determined
intervals in the variation of 2z in the diagram. If 2n>%, the secondary peak /-

values will be found outside the area of actual angles.

Consequentiy, in order that tihe radiation pattern diagraxm have only one
major lobe, the number of radiating elements in the array N=2n+1 should be not

less than the number that is, the distance between radiators should not ex-

1
-X’
ceed the wavelength, but with beam fluctuaticn, these minor lobes may arise.

In this way, then, we reach the conclusion that the distance between radiators

. , A . . .
should be within the limits ESd<A' From this, the number of radiatcrs in a

; . 1
linear, equidistant array should te of the order 27.
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Linz be Wi=2n+l, and the numbar ci radiators in the same colunmn

in this way, the number cf slements in all in the array is RN=N,N~=(2n+1) (Qa+l).

Let the distancs tetween elements in each lire be equal to

- .

We snall introduce the felliswing nctatioas:

Consaguently thus:
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ubstituting expression (15) incc (15), we zet:
Substituting express (1 te (15), 3
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1f we take into acccun: formula (12), it is not difficult tobe convinced /L

that Ak LR (v, 12D,
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if the array factor has the form:
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The interpolaticnal polynomial {17) will converge to the function R'(u:i, u2)

in the case when it

hich are analogous to

the conditions for trhe linear array. The degres of approximaticn depends cn the

aumber oI elements Ny and N:. The larzer X; and s, the more prec

£

sely will the

assizned function R'(uj, uz) ke assured, that is, all the deficfencies of a linear

arrav are inharent to a planar array as well.

Ncueguidistant Linear Arravs

Improviag the approximation of a derived radiation pattern diagram to an

assigned ore is possible not only by means of increasing the number of radiators

on a2 section (-7, 7), but also as a result of their more rational placement.

In fact, from the theory of interpclaticn it is well known that for purposes

of improving the convergence of interpclational processes, the nodes should not

be taken to be equidistanc

metrically with respect to the center cf the interval, concentrating

om each other, rather, they shoulid be placed sym-

them toward

its edges. Consequently, with cne and the same n, better approximations will be

derived with a nonequidistant array.

We shall go now to an investigatlon of nonequidistant arrars.

As was demonstrated ZIn the cited werk [2], functions of the class B;, that

is, functions representing a series of the type (6) or (7), can always

s
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It is not difficult to note that if R(z) belongs to the eclass B',
)

is a step function, and expression (19) may be rewritten in the form:

te repre-

then f£:(yv)
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eXaCt.oyr  the racliitors Tusl 0a ploced ot fhe points =I.(-7.53.<7). The current
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i
= PR Nl 2 e ~ _ B % s . _..oTz ., w
f. 7)=f(-r)=5, £.01)=". Ccnsequenclv, the arrar fa::ior ccs~— 1s created by
torew foini radiaters disposed 2o the gpeints --, £, - with curreat amplitudes
7 ’ o -7
equal o 13, 172, 174 respectivelyv.
If R{z; is an integral function of £ aite degrec, but dces btelong to fune-

vals -z2tween
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wiil approwimately represent the assigned function T.z). Tre degree of asproxi-
h
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pends on the number of degrees and wt
thar the gvreater tI imb £ 32 ca 1% ne merae o cizelv will fuaneccic
that the greater the number of Zdegreas taken, the mcre srecisely will function

R{z) be represented by a function of 2lass B'. At the limit fcr an irfianite num-

cer of degrees, we get a precise equivalence. It is prssible to select the place-
aent cf the & n such a way such that the mazniiudes of all the iumps 5%

i
function £;(y) will be identical along the whoie altsrnatiza interval v (frem
y=0 to y=7). Fer this, we derive an array with identical poirts in its elements;

and this 1s easy to realize in practice and conveniz:nt for exploitation.

We shall give an evaluation of an approximation 2{ & darived radiztioun pat-

tern cdisgram to an assigned one.
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As calculaticas show, in actuality, the de-
b -

higher. lHowever, this estimate shows that
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the approximation is cuite hizgh.
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where a i5 a certain wvariacle.

'. It is pussible to represent it in the form of a sum of twe Iunctions, cne
' which belongs to the class B!, and the cther to the class wl. 143 a conse-

as
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quence, it is impossible to derive this radiation pattern
of a system of point radiators. We shall attempt to do this in an approximaticn

fashion. We shall find first the functiom f;{y):
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and
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iz, 2. An approximation cof
+) ©y means of a step fune-
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As a consequence, the maznitude of th

The peints at which £;(v) have jumps
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e take the magnitude cf the jump of the function f(v) ol
. ba 7 1 2a ‘
to be equal to 3 and at the points y=t7, to be equal to 35-— At all th '

cther points, the jumps will be the same in magnitucde and equ

conseguence:
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constructed according to the field. As may be seen, a good approximation is de-

1,

rived for z not exceeding 4. The majcr lobe of the derived radiation pattern

diagram is somewhat narrower thaa the major lobe of the assigned diagram, but

the minor lobes are higher. The further mine» lobes of the derived diagram are

significantly higher than the corresponding minor lobes of the assigned di-~gram.

It should be ncted that the approximation carried cut here is not an cptimal

the array elements, bu:t decrease from the central eclements toward the edge elements,

then it is possible tc significantly reduce the minor lobes and approximate the

derived diagram to the assigned diagram for larger values cof z.

Nonequidistant Planar Arravs

The method for calculating nonequidistant linear arrays examinaed above can

be extended also to planar, nonequidistant arravs.

It is obvious that if the current amplitudes taken are not the same for all

A
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Carculating the integral of (24, for this function., we g2t:
N »
o T g
: . ; . ,
If the function Riziz: 1s 2 sum °f the form of frrmula (3), then f(x, v)=Fn
ftor corresponding values of . and . . If the functisn 2(z:,z:, does not belcng
i . - -
] s s - 3 : e . . !
to class 3, but it is an integral function of finite degree, restricted to 4

w

oy
the real axis, then I(x,v) will not 52 a step function; it may have 3jumps ¢r steps,
cn

out im the interval beiween jumps I1fs value will not be a constant. Co

sequently, @
in this case it Is possible to provide an approximartion cf tha assigned radiation

pattern diagram by means of approximating £(x,v) as a step functiocn.

i
i
If function R(z;,z;) 1s fixed in the form of a function that cannct be repre- 5
e : ke § . s (" o e s .l .- it me o }
sented in the form of expression (23), then it must be preliminariiv approximated
with any degree of accuracy, previocusly fixed, bv means of a3 function of the form
U (zv,22) ? (z1,z32), belonging o functions of class W_ _,, as this h“as been

A, 0 G 7,0
demonstrated in {2]. Then, using formula (24), it is necessarv to determine a

]

functicn f(x,y) which, in its turn, must be approximated by ameans of a step func-
tion. The degree of approximation of the function f£(x,v) also determines the
degree of approximation of the derived radiation pattern diagram to the assigned

one.
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Several prchlems in cthe theory of radiation system design are examined.
it is cemenstrated that wmixad problems in synthesis and design can be reduced
to nonlinear integral equations.

The conditicns for the existence of an exact sclution to mixed synthesis
and design problems are examined; methods for determining desired amplitude and
phase distributicns along a linear radiator are indicated, and it is proven that
mixed problems in synthesis and desizn do not have unigue solutions.

A unique method for calculating unknown current features in the antenna aper-
ture is suggested for all types of mixed problems. Under some conditions assigned
tc the problem variables, it is proven that there is a sclutizn and that chere
is convergence in the cocmputation process.

Introduction

Wormally, problems 2xamined in the synthesis and design of radiation systens

raduce to the determination of the zurrent amplitude and phase distribution across

the antenna agperture at a known vector (in the general case) radiation pattern dia-
gram. However, it is often the case that a synthesis of ocaly the amplitude or
phase ¢f radiaticn pattern diagrams is necessary, while the current amplitude or
phase distribution along the antenna is assigned. In practice, these kinds of
problems are enccintered more and more often. A series of examples oI these kinds

of problems is examnined in the cited work [2].

Problems, in which the amplitude or phase diagrams are fixed, as well as the
current amplitude distribution and current phase distribution along the antenna,
and in which it is necessary to determine the remaining two features in the diagram
and in the current distribution, are called mixed problems in antenna synthesis and
design. Individual questions in the theory of these kinds of problems have been
investigated in a series of works [l1, 2]. It is possible to distinguish the fol-

lowing tvypes of mixed problems:

(1) to determine the current phase distribution along a radiator and the

amplitude radiation pattern diagram realizing the fixed current amplitude

|
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ion pattern cdiagram realizing a fixed amplitude radiation pattern /4

diagram and the currant phase distribution along the radiator;

(3) to determine the amplitude radiation pattern diagram and the current

amplitude distribution along a radiator realizing a fixed phase radiation pattera

diagram and a current phase distributicn along the radiator; ‘

W o — 8

(4) to determine the phase radiation pattern diagram and current phase dis-
tribution along a radiator realizing a fixed amplitude radiation pattern diagram

and current amplitude distribution along the radiator.

Initial Concepts

' 1
f In what is to follow, for simplicity's sake, we shall corsider only a linear
T radiator wnose caaiat’on pattern diagram can be written in the following form
i Cllt 3
‘ Di®i--  Fiexp itksin®- dt, b ]
—a
!
27 N . . s . I3 :
where x==; A is the wavelength at which the radiator functions. W
A E

. , . v . A Ax

Wwe shall introduce a substitution for the variables: 7 sin €=y, t=-7%-. Then
the function D(G) is transformed into a certain function R(u), and function F(t)
into function fo(x). After a series of noncomplex transformations, equation (1)

may be reduced to the following equation:

. »;. P . . e Ay 9
Runexp iqi) = | /Flxnexp it(x) exp iux 4x, (2
v

where the function of f(x)=§fo(x); 20-2% is the electric length of the radiator;

#{(u) is the phase radiation pattern diagram; ¥(x) is the current phase distribution

ia the radiator.

We shall assume that function R(u) belongs to the class Ww_ (this does not

isturb the generality of the comments here, inasmuch as all radiation pattern

; 55
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It should be noted that for functiorns of the ciass W the following inequalit;
- ¥

is derivad from equation (3):

0 r
ViR de Do Floide < e o4y
. — —
th as is well known, under the conditions indicated above, :he functica of the /L

amplitude-phase distributicn of current along a radiator is determined from the

e Tl SR ExT L enp —ax dul

while cutside the segment [-7,7] £(x)=0.

Equacicns (2) and (53) are baseline eguations in considerations of questicns

in the theory of mixed problems in the synthesis and design of radiating svstems.

[ Cunsequently, the four types of mixec problems indicated in the introducticn re-
duce mathematically to the following: 1
(1) «known functions 5f{u) and f{x}; it is necessary to find the Zunc-
tion ¢(x);
1 (2) the functions R(1) and () are xnown, and it is necessary te fiand
] the function f(x);
(3) the functrions $(u) and ¥(x) are known, and it is necessary to find
. the function f(x);
{(4) the functions R(u) and f(x) are known, ané it is necessary to find
the function ¥(x). i

Wie shall demomnstrate that the solution to each of these prcblems may be repre-
sented as a solution either of a system of integral equations, or as a soluticn

of a linear integral equation. With this end in =ind, we shall transform expres-

PN

sion (2) into the following equation:

R() = j' Flyexp if-fd — gy -y, i

-3
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We shall examine in more detail the reduction of problem 1 into & Tonlinear,

alter che real and Imazinary yorzioms, makes it posaibls oo
the consideration of 2ll types of the mixed problems to a consideraticn
fcllowing system of intsgral equations with two unknown functions:
VJIC0s LY — g ee iX di = Ko
.

-
-
KQMMUTWP;ﬂm—ama=O
M

he reduction cf mixed problems to systems of integral equations is also
convenient {rom the poins of view that these systems may be solved with the aid

of approzimate metacds Iin numerical analysis, which will not be examined here.

cthese kinds of approximative methods is cited in work [11]. It is a simple

tc see that equation (2), after simple transformations, can be writtenm in
ra of cthe f£ollowing system cf equations:
Runcesy = | Joncos v —wxldy

. |
- { {

o>

b3
Riwysing o) = 1 frusin[s(x) <~ wx}dx

.

-_

uatien (3) is equivalent to the following kind of svstem of equations:

v

o0
frerees o= | Riuycos @) —uxjdu
4

- . (10
-
Juasin s{vi= y Puasing i —uxjau

—

intagral equation, with the reduction method for the other problems to integral
equations being similar. Multiplying equations (9) by sin ¢(u) and cos :(u) res-
rectively, and assuming that sin $(u)20 and that cos $(u)#0, after transformaticn

we gel:

¥

\' Fisinlg o — o) —ax]dx = 0. (ih

it

Lo




In the cazse when sin >f)=0l»71i="%, whera

unknown Zunction {X). Bv means Oof similar consid

4

demonstrate that problem 2 reduces to the following nconlinear integral egquation

It is clear that if as a result of the scliution to equation (12, a function
:({u) is found, then from equation (5) the function f(x) will be determined sasily,
and as a result, probiem 2 will be solived. Precblem 3, as it is clearly seen, can
function f(x), is nonlinear. And, firally, problem 4 reduces to = nonlinesr, in-

teural equaticn after simple transfcrmations, which

Zquaticns (11}, [12Y, anl

where P is the integral operator correspondingz zc the aguations, and X is the

function sought.

The Sclution to the Operational Equation 7(X)=0

[N

Lat G be a measurable set of finite or infinite cardirnality. It is possible
to demonstrate [4] that the aggregate of all continuous real functions a(x) on

G forms a Banach space E;, if the norm u(x) is set by the equaticn:
RE BRI B AR
X £

It is possible to show in the same way that th

(g
w
JQ
[ 4]

gregate oi all centinuous
real functicns S(u)=?tx(x)} on G forms a Banach space I:, if we assign the norm

2(u) bv the equation:

on
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the theory of operacors [3] that the cpera-

the space E: into the space E;. Then =agua-
2

zle step method of constructing a series

where A 13 2 certain operutor acting out of space E; into szpace EZ,.

f4, 5, 107, which make it possible to indicate several conditions that are suffi-
cient for the existence of an exact solution to mixed problems of synthesis and
design. It follows from the fcrmulaticns c¢f the majority of theorems indicated
that the important featuvaes for their applicability in the case under considera-
tion here is proving the differentiability (according to Fréchet) of the operator
F{X) and the fuifillment of the Lipschitz conditicn for the derivative P'(X) [6,

7. 81:

FoX—FY e LN =

where L is some constant not depending con X and Y.

The fulfiliment of the other requirements of the theorem is assured by a
suitable selecticn of an auxiliary operator An(Xn) and an initial approximaticn
IO. In calculaticns, it is often the case that it is convenient to taxke the cpera-
toer 3P(X) for the An(Kn) nperator: An(x)=BP(X), where B3 is a linear operatoe

31

2ting out of the space E; into Ej.
1f, in particular, B=[P'(XO)]'1, then the series (15) gives a mcdified Newten
zethod; if, however, E»=E; and B=al, where I is a unique cperator, then a method

of sequential approximations is forthcoming [4].

The Correctness of Mixked Problems in Synthesis and Design

In considering mixed problems in the synthesis of radiating swvstems for the

deternination of desired current amplitude and current phase characteristics in




2

v

ticas (2) ani (5

po
3
o
[l
Jy
[
[0
‘, a
W
vl

lzm 2 and prove that the function :{u) derived freom equaticn (12}, together with

the ascigred functions R{u) and y(x) satisfy the initial integral equaticns.

we shall suggest that the phase radiation »nattern diazram 5(u) determines

ter it is substituted into equation (13), a second curvant cistridution (x

n

Then, after scme

0

and a second curreat phase distribution yu:(x) in the radiat

simple transformations, it is possible to reduce equation (3) to the fcllowing

s

+t

=
> i !
VR 3N G — 1y e x| di == D), i1G

-0

As i (x> is a solution to aguation (12), the follcwing ralaticnship also holds:

Bl
PRSI q iy — () — ww Ju =0, T
2

Afrter adding and subtracting termwise equations (16) and (17), and after 1

elementary transiormations, we arrive at

b

\R;nwﬁgw%—iﬂlfiﬂ—«ﬁcw‘“)5‘mdavu
—~on

- — ) Ll (x) ] R €1 Rt N L1 AT
“R{u)ccs {q’- (u) — -——-—72————-uxj sm———-—:}——— ald .

-—00

b(x)-¥; () . (xi=e(x) .
Taking into consideration that cos ~—————-————£O and that sin ——————%0, /

R

we can write:

. -
. 0 P - et ] .
VR <in T R TE 2 o . i
. ; K
e
o3
'y C— e ey ) . l
\~’n'HC~-~"«,u.|~——-—-»~.~'r—— N A ‘
~x

Multiplying koth members of equation (18) by i and adding both equatioms

termwise, wa receive after a series of computations:

| _1)“,‘(\'1 -

. v - .
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e o pe a radiztion
patcern flagram of a radiator wicth an amplitude distributicon of R(u) and a phase
rom phvsical considerations, it is ¢
identical zo zers only in the case when R{u)s0, which has ..¢ suvsical sense. In
this wav, th: solution S{u) of equation (12) is the solution for problem 2 in
wix)-uy(x)

2

f a2 radiazor. We should note that if sin =0, then

). But this means that physically, by means of the sclution
s{uj, onz and the sama current phase distributicon is realized in the radiator.
-~ e Y= f N . R . . 1
12 cos “00) L'X)=0, then J{x)=y1l{x)rT. Ia this case, as one may easily be con-

ten 2 mav te rasolved by means ¢f a simple substitutieon of the value
of ¢{x) into equation (2), if equation (12) has a solution ﬁ(u)iw, and if, obvi-
susly, it has this sclution. Thus, the determination of the function &(u) com-
pletely resclves the mixed preblem 2 in the synthesis of a radiator. In the same
wav, 1t may be demonscrated that solutions to equaticas (11), (12}, and (13) are

also solurtions to the corresponding mixed synthesis prcblems.

It is interesting to note that the theorem presented in [10], when all re-
quirements indicated are met, yields the possibility of fiading the necessary cur-
rent amplitude and current phase distribution along a radiator that realize the
assigned radiation pattern diagram, but they do not 3zuarantee the uniqueness of

distributions found in this wayv. As 1s well xncwn, nonlinear integral equa-

tions, speaking in general, do not have unique solutions; this has also deen ob-
’ g s q

re

served in the kinds of svnthesis problems under comsideration here. In fact, i

attempts are made to synthesize or design an antenna with a phase radiation dia-~

N

gram equal to zero, that is:
f )= 0

under the condition that the current amplitude distribution aleong the antenna is

a2 positive function with respect to the zero point of the selected cocrdinate sys-
tem, then a synthesis of the desired radiation system can be carried ocut if the
current phase distribution along the radiator can be realized physically in the
form of any odd function. In this case:

b 3
jrensin]— i —uxjde = — | Flosinpy 6 - vjdes G

when sin {y(=x)+u(-%)'= -sin ly(x)+ux!. A similar situation may be cbserved, for

i

example, in the synthesis of an antenna with a positive amplitude radiation pattern

61




if (%) resolves the

Zistributica aicn
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tiis problem.

of radiaticn svstems, in the absence of tha nermal kinds of synthesis problems
sznsicered, have (in the case when thay are realizable)
unique soluticens. The questions in the theory of mixed s

Gaterminel conditicns examined in the present work mav bte generali
r - o
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a two-Jdimensirnal radiating system, and alsc for syste:
lties integral).

In conclusion, we should note that the integral equation (12}, correspond-

ing to problem 3, is linear, and for that reason, after tranaforming it intc an

equation with a svmmetrical core:

]71x)K(z,xadx==Q

wvhere:
<
T I B Lo B B I e A N LN
..qn

it is possible to apply the following recurrent saries

t+ty

or determining a desired

function of current amplitude distribution (if a solution exists) [§¢j:
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SCURC

Yoo A, Pistolwors

A mechodology for studying binary svurces of extraterrestrial radiofrequency
emissisns is analvzed; the methodology is based on the theory of the complex co-
afficient of Zernike conerence and on the application of an interferometer with
2 phase shifter. Mathods for determining the angular distance between the sources
are examined, o3 well 25 the ratic »f their intensities and their relative posi-
tions.

Two methods are used for studving the structure of complex extraterrestrial
radicfrequency sources. One of them is based on the apparent retardaticn in the
sCurce 2s iU passes across the meridian 1], Ta the second method, sugzgested by

Jennisen (2}, 2 tripiz-antenna interferometer is used. Doth methods are quite

in the present article, a particular case of the complex structure is studied,

Y

that is, binary scurces. A comparatively simple method may be suggested for

O

measurinz their parameters. It i3 based on an analysis cof the complex ccefificient
a onerence in the interferometer antennas corresponding to the

3] and an the experimental determination of the magnitudes characteriz-

ing this cceffizient. This latter is connected with a luminance distributicn in

the sourc v weaas of a Fourier traasformation.

ﬂ\
(o
~

Assuming the sources to be point sources, we will look for an angular separa-

on between them, the ratio between the source intensities, and their positions

r
[N

with respect to each other.

The Coefficient of Coherence for the Case of Binaryv Sources

Let at the points P; and P2 on the Earth's surface (we shall take it to te
flat) antennas 1 and 2 of an interferometer be set up with a base d (Fig. 1).
At pcint Q in the feeder line, a receiver is hooked in. The intensity of fluec-

tuations arising at input is ([4]1, p. 507):

wn
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Here, I:(Q} and T-7) ure the Intarsizies of the Sluctuations picked up in- iz
11 . o ~ - H -1 51 2
Jividrally by the first and sacond intorfsrometer antennas; - - .:2e < 1is
the compiex ccefflcient of the [luctuaticn eoherence at points P- and P31 I is

Zxpression (1) is zeoed for small shifts acress time 7 in the siznals picks

up Sv beth anta2nnas and ctmoined at opoint 1, when

where Lf is the bandwidth of the frequencies picxkad up.

rn

We shall examine first ¢f all a source nea

(¢

disposed cn a plane - with a coordinate systenm

rn

ace A, in which the interfzrometer is dispcsed

surfaces is designated v R, and we construct on

c
whose axis is parallel to the axes of Sin, with the zero pcint lving normal to

oG. Then, accerding to the Van-Zittert and Zeraike thecrem (}4], p. 510):
. . -—ix{o.+ . Y iy
whe cae
L hE o
,_|12::e ~ -

IRACIRELS

" 27 -, . . . Coe s ;
Where <==—, where + is the mean wavelength of the noise radiastica picked up;

A R ;
5> is the phase difference in fluctuations arriving at pcints P; and P» from the
Y -
zero point in the coordinate system I¢n, equal to —(oP:=oPn); I(I,n) is the
\
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in what is to foilow, we shall call the magnitucde ui» the nucleus of the co-

the x~axis (with z magnitude of p) and y-axis (with

x-axis. Then

2
where u is the angle formed tw the direction

dispose the point Py and ?. along th

Zrom point O onte the abscissa of the point §n with the normal to the surfaces
T arnd Ay at the sane time, q=0. Let the coordinates of the point sources be res-

their intensities be respectivel

“l& shall chooszz the zeroe noint of the cucrdinate s+
—7

o=y [Fig, 3>, Than, tha srcjecticn of the aniular Jistance

betwesn the sources cnzo the surface $:0 will be 2v, and tihie aucleus is:

s o iadu . o .
, ze!TEY Ly faLiyecosmin 4 i{a—8Yrinniv _
2T A d - tl-.—b -
. d=—" . ;
= COS KUY — | ain wdv. {4)

Fig. 3. On calculating the nucleus of the coefficient of coherence.

]
The nucleus of the coefficient of coherence ujp, as it is a function of the
electric length «d, describes a picture of field voltage distributicn in the in-
terference bands on the surface A, with the interference bands corresponding to

the pair »f sources under consideration here, not in terms of their intensities,
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j Iixing T3 positicn o osurilasce T oand shifring the base of the Interferometer

Y

4 alomz the x=axis. 3 carsiilel line from sast to west. Howaver, DeCauss the aucleus
L}

i conrdinata svscan MoV, and the second antenna of which shifts. Subtracting the
F electric lunsoh o zlcung the OX-axis from the zers poins of the coordinate system,
k‘i wwe levive manimums for the interfereace banls a2t cos adr=wl and mininums at
4 5l NwrEwl, ne ileld velizze phass on surfacs A depends on the magnisuds WU, Sl
. well 23 eon the sign of the diffevence betwsen a-b.
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tc determine »y means

' ‘p to the presernt :time, a radicfirequency source has ceen studied close o
tne zezalich, Conclusions drawn for it are casily extended to the case of anv pesi-
t Zizn for the sourze. They will remain justifisd if we taks ctha proiazcztion of the .

The Current on the Output ¢f an Interferometer with a Phase Shifter

we take I;(Q)=(a=b) and I,(Q)=N(a*b). Thern, expression (1) ma

Sy =0 N B2 L = i
“e nocte also that:
maCosBy =R = Rery T T ale e

where y=2¢+3.

The measurement method suggested here is based on a shift in the lobes o

n
Lo

tne interferometer diagran. The methods for this kind of sihift using phase shifters




. B BT I U B e

s
(
:
;
i N
i v2I€ SuZII&3led IT

and Ihomnsua T4,

Wit a transiatlion of the source togerther wica ... sky profile, the phase r

shifz : oip the =ignals arriving from point o on the surface - to antennas 1 and

IR oy = - S .
27 LOl3 reagon, meg_ L, wWLeLe!

Here, .. is the angular velceity correspending to the Zarth's rotation; & is ;
: the source declination: & is the angle between the base and the =ast-west line.

3 nhasz shifter, it is possible teo derive the frequencv of the ocutput

ané expressica (5) takes the following form: /€

Dl =00 o N - - 20 MV TG = Dvcosadoeos)r -

— (@ — bYysin wddr inQ1l, Ol

The currznt amplitude I of the frequency 5 is proportional tc:
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Determining the Angular Separation Between the Sources

In order to determine the angular separation 2: it is necessarvy td kncw the
period of the interference bands on the Earth mentioned above. In order to find
this period, it is sufficient, by varying the base d, tc decermine the distance

between the pole maximum and the nearest minimum. We shall substitute variations

69
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in the idscinez Tetwsen the antennas wish wariaticns in o tha rocartiza frenusncer

In tne IZreguency range under consideration here. we fing 2t Flost the Ire-
quency wt, 2iving a maximun value te the picked-ur ower.  or this, it is neces-
sary that:

% 3. Yoo -
BENTRIUN I & 2
whetre p is a whole number,
- L - . . .
ihen, wa search for a Irequency w2, larzer or smaller thar .., at which the

power received from the bDinary scurce has 4 minimum wcalue. It i35 clear that:

Y . Y- ) 1
L R R e o
-3 o 4 -
iro2 whichs
1
VT e t3
M- .

d betwean the antennas must be taken tefsrehand to be sufficiently

that at a fived maximum frequency dispersicn detween w: and &3,

b

the measurement cf the determined ninimum angular saparztion Deétween the sources

will be assured Thus, for a minimum angular separsticen ¢f 2r=1'=3,201-1072 rad,

. ot 5,000 . e ) .
at p=53, mi=-=5y75—3=3,600. It is clear that m:=8,300z367, chat is, m.=9,440,
NETEAL R I - -
or my=7,740.

Taking mz>my, we get for a mean frequency «.: m3=9,030. {consaequently,

=5.095.

The distance between the interferometer antennas is determnined by a fixed ,

ninimum angular sepavration QLQJF for the nmeasurement aad a {recquency dispersion
Lhs

of £; and £;. Trom expressicns (13) and (14), it follows that: .
i P

where p is a whole number.

On the cther hand, from expression (13), it foll.ws that:

A r | . -

My o= : =
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Tar measuring the angular separation 2w between the compunents of the birary

)

it is necessary to know, although even only in an approxuimate way, the
curve of amplificacicn in the system interferometar antenna-rsceiver” within the
frequency range f;-{:, in order to be able to finl correctly the frequencies of
the maximum ang minimunm of the picked-up energy. This curve, naturally, shoula

10t have sections with great steeonness,

Determininz the Ratio of the Source Intensities

In ocrder to find the relaticnship of the intensities a and b of the sources,
it is sufficient to find the ratio of the field wvoltage minimum of the interference
bands on Zarth (the field voltage proporticnal to |a-5!) to the field voltage maxi-
mum {proportional te a+b). For this, it is necessary to know the ratio of the
amplification of the system "antenna-receiver" at the frequencies mentioned above
v1 and w2, and with a lsrge disoersion of these frequencies, to know also the

relationship of thz scurce radiation intensicy to the frequency at the pertinent

We shall denote a correction factor, which takes into account the joint ef-

- . . , 9, ,
ects of the facters mentioned above, by means of aé. Comparing the current am-—
plitudes I: and I, at the frequencies u; and wj, ang noting that I;~f{a+b)q: and

T~ P v E£gad
In~,a-b:q;, we find:

intensity of the weak source leoon .

intensicy of the streng source | — =~ —

In order to explain which of the sources a and b is the weaker, it is neces-
sary to determine the sign of the imaginary porticn of the nucleus of the ccherence

. ' . . ,
coaefficient ujp; this requires special measurements.

Below we shall cite yet one more method for measuring the ratio of source

intensities.

Determining the Mutual Positionines of Sources with Different Intensities

As has already been indicated, for this it 1s necessary to deternine the
sign of the difference a-b; this can be carried out b; means of elucidating the

relationship between the phase of the current IQ and the observaticn ceonditicns.
71
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aut
oI wd chnennels connected in parallel to the antennas of an interferometer (Fig.

“), and Plas. .17 03 between the -urrents I: and I winichh aust te compared za

P
.4 i .
-G i\ 2 fiz. 4. Diagram of an interferometer
R with two channels for determining the
, i ; autual positionirnzs of scurces with

? ‘- Zifferent intensities.

Thus, channel 1 can be used for receiving at fraquancy »:, correspoading to

the maximunm of the interference bands, and channel 2 for receiving at frequencies

foo=gyad—Mense

by =S —sinQe !

The phase shifts between tlae points iﬂl and i, zust be =3. The purpose for
e [y -

the measurements is to establish the sign cof this shift and 2c determine the

[¢]

sign of a-b. The phase of the lobes in the interferometer diagram can vary with
g z ¥

-~

a frequency  on the crder of 25-50 Hz. At these frequencies, the phase shifts

of two currents mav b

3
o

mezsured sufficiently accurately. In this case, the fol-
lowing methed may L2 suggested. Let the phase shiftzr in channel 1 maintain a

frequency &, and in channel 2 the phase shifter maintain a frequencr of 7, ccr-
responding to the displacement of the lobes of the diagram to the opposite sije.
For measurements, it is most convenient of all to take the frequency at which <t
kdy = =3in xdy. We shall consider further the case correspeonding to a positive zizn
as tnis takes place for the mean frequency Yy in the numerical example citec.

For this case:
iy, =Cla—b)eos s~ (g —p13in Q]
, \ iy 120
i =Clic—d)cosiit —ia—bysinQi] |

where C is the coefficient of proportionality.

We shall find the phase ¥ of the current i42 according to cthe ratlio to i. ;

then:

. qQe—h 91
g — = — , o)
g 2 d 3




R et s 2l

rh

the diffcrence
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- determininz nct onlyv the sign o
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nstance can be greater than unity

Supplemsatarv Remarks

It has been presumed up to the present time that a shift across the time <

of two signals combined at point Q is small and satisfies the inequality (2).

the sky profile with respect to the base of the interferometer. We shall consider
r A

'‘sast-west,' when this kind of translation makes
whare 5 is5 the angle formed by the line to the source with the normal to the base

in the case under ccnsideration, the following factor is added to the last

term in zxpression (1):

a factor characterizing the envelope of the interfercmeter diagram. 1If the ob-
servation zone is restricted by values for the angles 2, at which the envelcpe
does not fall h»elow half the maximum value, then, taking sin 9:0, we get values
for the corresponding sector of the angles 2:

LI
[

A= = o
daf

that is, it will depend only on the band of the frequencies picked up and the

lengeh of the base.

Using expressicn (17), it is not difficult to find that:

~e~ivg
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num angular separation. oo osntzised within it and for which the iaterfercmeter
oAb t -
ia o~ Tarad 3 E =" . 3 \fZ—f_ = 1 - - : et
is calculated. Thos, Il _. . =17 and il ——=7.1, taen az = , -2=22", and
LE_soni oo S -1 ' a

at =107, 2i=4°, ,

If the time {or finding a source within the Iimits ¢f the sector 47 is in- i

out observations, then the ratio tetween the feeder lengths

In conclusion, we should note that the methods suggested herz f£or nezsuring
are only slizhtlv sensitive to arbitrary variations in zhe pnase shifts ia the
interferometer antennmas, because they are oriented on the mean freguency 3
intersecticn 2f the source by the lsotes of the radiation pattern disgram £ an

interferometer built tcgether with a phese shifter.
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THE ANALYSIS © A NN m CGLNIOUS LINE [

LOYING PARTIAL WAJES
D. I. Mircvitskiy, I. F. Budagyan

In the present work, 2 new method for solving an analiysis problem (a primal
pre2lem in the propagaticn of waves in nonhomogeneous carrier lines or media)
based cn the concepticn of partial waves is examined; this makes it possible t
determine by means cof a sufficiently uniform method :the space and reflected pa
tial waves, and as a consequence, the complete field and internal coefficient of

o]
-
Y

reflection for arny arbitrary, nonhoncgeneous line or medium. The recurrent rela-

ticonships derived assure zreat accuracy in solving czoblems connected with wave
Jropagation in a weakly nonhomogeneous system; these probiems are usually con-
sidered in short-wave approximations (the Wentzel-Cramers-Brillouin method).
These relacicnships are, however, good also with a shift to calculations for a
system with a sharply expressed dependence of the parameters on the cocrdinates,
winere normaily long-wave approximations are usually used (the Born and Kirchhoff
netheds).

A precise soluticn to the problem of wav2 preopagation in a ncnhonogencous
svstem (a line, carrier, or medium) has been found up to the present only for
several principles of variation in the wave number. I connecticon with this,
different approximation methods [1, 2, 3] have .zined zreat siznificance br tak-
ing account of the demands of high frequercy signal technolsgy and radio phvsics.
In solving this problem a start is usually made from the e¢quaticn o Mag<.=0 4,

5, 6], which connects ouly the full field ¢ with the parameters of the medium.

This is explained by the facr that the subdivision of

w

into two parts, t> which,
beginning from these or other particular considarations [7], may te ascribed the
sense cof space and reflected waves in a nonhomogeneous mecdium, is ambigzuous [3,

9!. The conception of partial waves [10, 11] makes it possible to formulate re-

quirements tnat must be satisfied by a partial space wave 1 and a partial reflec-

ted wave £ in a medium.

It is well known that the field outside a homogeneous layer extending fronm

1X0% 1<y(x-a)
?

i<ax - o . . .
0 to a 1s expressed as u=e OX4re-t y (%£0), y=txe (x2a), wnere r and

t are its reflection factor and transmission coefficient, <% and <, are the wave
numbers for the left and right homogenecus half-spaces. The partial space wave

. . . icox
a should be transformed into an incident wave as it entuors the laver (a=e 0
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iim fzotor Ao Thils factor satisfies the corresponding Riccati =quation

"

R — 2l Rixi— ntn TR — 1= 0, L

A

< in the normal manner [12]. tor a laver {carrier line) with pronounced
r, the reflection factor upon input R(0O) shoulé be con-

mzozed with oan output reflecticon factor r(ro) by the relationship:

‘ . . I Ay =1 Ly a

e RO =TI =T RN, T={s—a@ 50— i7" . (2)

dere, 210) and Sy are the characteristic impedances ior the entry plane
{z=+0) znd cthe left-hand homecgenecus half-space. At the layer output, this fac;
tor should be transformed into the Frenel reflecticn factor for the iInterface
hetween two honmogenecus media [c(a) and ca]. For a stratum with even input and
outout EJ(O)=:3, o(a)=oa], the internal raflection factor should be transformed

at input intoc a laver reflection factor R(O)=r(<0), and at output, it should be

equal to zero.

Space and reflected partial waves in a nonhomogeneous line (laver, stratum)

satisfy a system of two first order equatiomns [9, 10]:

’

3“"("—iK}=ﬁll, N
B -~ Pla—iK) =z’
which connect the wave number £ and the normed gradient » of the characteristic

irmpedance : of the nonhomogeneous line with space % znd reflected I waves of the

field w:

K=Ky ) tn, r=—— =._“J_“np,'=
2 2
Lo . A t4)
= “-Tf(lﬂ 0y —(Ing)'), o= ] ._:_

The equations (3) derived by means of an approximation of a determined,

g sToothly nonhomogenecus stepped line [13], for each j-th jump of which, with a

g thickness of.d , the field may.be represented uniquely }n the form “j=3j¢5ﬁ’

‘ where ai=Ajel<jx, and 3j=Bje'lKjx. Here, the amplitude coefiicients Aj a;d B,,
as welldas the wave number «, and the characteristic impedance :j are constan:;.

Cae
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1 Volterra intezral equation, whese differentiaticn with resvect t> the coordi-
(

mate taking into account the internal conditions of equaticns (13) and (i4) in

tha cited work [14] yields equation (3) in the present article. In the work
cited {2, the equations under (3) were derived earlier by means of arotrer

method.

In deriving the system (3), there was no assumption as to :the slowness of
variation in the features «(x) and o(x) in the medium along the coordinate x,
and as a consequence, there are alsc no foundations in the solution for this

g

m to introduce the small variable f, writing thus, for example (73], p. 182, )

w
M
ct

vst
the solution for the wave propagation problem in a nonhomogenecus medium thuslv:

L TEPETY) RS DU SRS T S . I RS R S 2
Y=y T - : 2 /

r= b

[$3]

. . . . .
nd ¥, are fuactions corresponding approximately to the space and re-

where ke

flected waves 2 and 2, but not derived with the help cof svstem {(3), dut from cre

equaticn for the full field .

s
follows (15] that system (3) has a natural solution, which mav be found by means
of series approximations. The series of the functions derived for this converges
snoothly in the fixed interval, and as a consequence, the boundary functioms are
continuous. It is essential that the solution to system (2), generated by means
of the method cited, does not depend can the choice of a zero approximation, znd
for that reason, for both weaklyr nonhomogenecus media, as well as for strongly
nonhomogereous media, it is possible to apply the same calculaticnal scheme.

For this, the solutions normally found by various methods ([16], pp. 63-103)
(short wave and long wave approximations) will be derived by means of a completels
unifocrm method. A certain increase in the volume of calculations, caused by the
use of a zero approximation which is nonoptimal for one or another particular
problem, is compensated for here by taking into account the rapid working times

of computers in applications of one cr another computation program for the vari-

cus problems in the theory of wave prepagatica.

Cases when the functicns “Har=idy.—q w1 and

tinuous In the assigned interval w=0 r«==)  requira further study (.13}, p.
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nships in che sclution o e first order equation:

The Tundamental Recurrent Relatioanships

In the selection of a zero approximation z5(x) and Bo(x) in any variant of
the problem, it is zoavenient to begin with a solution for a quite weakly non-
homogeneous carrier line (% is very small), computing for this the number of
approximations corresponding to the degree of nonhomogeneity in the line or layer
vnier consideration, that is, the more approximations there are, the greater will
be the nonhomcgeneity c¢f the line. The base equations for finding ao(x) and So(x)

are first order approximative differential equations, but they are not intercon-

nected:

S (&) = 2l [l —ha ()] =0, By - pyind i — dxin) =00 07
derived frem system (3) by equating the right-hand portions of the equations to /€
zero.

The solution for equations (5) for a semi-infinite layer, whose entry plane

is disposed at x=0, leads to the following expressions:

x f 1
7, (X} ="2,10) expf — ‘('l-—if\i) di | = 1, (OVA txjexpl i} wdx

§ 9 ( 16}
By =B (MK (rexp —i[rcdx ‘
where

Kixy= g™ (0",

The sum of these waves, found at the zero approximation, has the form:

x x
i \‘x(x.)d:. —-i '\ K (v dx,
Yo ) = 25 (¥) — Bytx) = K (x) L2 (Dre ? — B e ?

(N

We should note that this result overlaps with the expression for the field
in a nonhomogeneous medium, found ([9], p. 174) by the VKB [expansion unknown]

method on the basis of the equation for the complete field ¥ with the absence of
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1. It is possible to demonstra

corresponding cxpressions in the work cited [1

{
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w
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[19] tnat with »x=0, the following relacionship holds equent approxima-
tions:
S (T 10

ft

%y QY - % iy = 1:(‘)‘

Pty = 'r’)lq'_\n :"f,-:t")) = = IB.,U':F) = ﬁk’])

For this reason, the solution of twe independent equations for the n-th
approximation:
Foe gt —igh =B o Ble=Bily —iR)=2, % {9

may te coaveniently rapresented at n=l thusly:

. =~ Ty
Voo oyt dx, . - _’\' ALl Xy
) . -; .
TR AR T B0 xivie gy
11O
3 T -
— "\'&,,;1:“ " . { ap ety
Py = Alvie By — 20| 2iapye BN

we shall introduce for brevity sake the followirng notational symbols:

. ety gy,
:
Jowy - e 2 dx,,
14 ty
: LNt Jey 4 SNty Iy
Jowad gy - rape doy Vatvpe i
1 4 A
BT LN -_a N dy,
D (v)=A (e - L Gl =¢

Then, the recurrent relationships at a=2 taxe the form:

200 = D _(x) 2O {1 = Jow) S xp] - o
-

Balry=D_(x) B0) 11 = J o dwxp] =20/

For the third approximation (n=3), we get respectively:

g0

ts
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soproximation as well:

2y =D 2~y v = oo gy
=Bl oy S ey
Saixy=D_vxy BN —J o) = oegnd e

LU 1] AN I SRS I SR OU I AR B

In this wav, we shall note the recurrent formulas for positive and odd ap-

Wl

proxXinaticns:

e, =@ty 2OV = Jood o) - =
e d_ed ) L o v i en v, = B o
B B B e R AR A LI SR S
Baa b= D () BOVIL - S (0/o) — o)
R Lonoa vJo -L\';n-: J =710 J () — Joend s g
-,_,—-J_Q6J_(M),..J_;Xm_){;- ,

2, =0 @O = )= = )
i, i X ] = B0 o = T ) g
A5 63 IV 79 R S C P |
Boo 100 =00 30 T = Jo () otvpy - .;'-;’-fx‘;J_(x,\. ..

Jaox J_.u_r:~1@HLJU-J,HN_U”[4Q%"

Tia=2

iR TN B DALV R S E R 11 B

The internal reflection factor R=3a"), and consequently the input reflection
factor rfxg) of a nonhomogeneous line (layer) connected with it by expression

(2), is determined in the following manner.

In using recurrent formulas that describe partial waves, it is necessary
above all to determine the kinds of approximations for the partial waves that
express the desired internal reflection factor Rn (at the n-th approximation)
in the relation. With this end in mind, we use the Riccati equation (1) and
the linear system (3). We rewrite eguation (1) in the form:

R —v+—=(2ik+2rRR=0

and we shall use the first equation in system (3), which, taking into account
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7 be reprasented in the f3lleowing
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1

D -

- - [ S < L oy - :
oAt aAcCelIing To Lhe CLiormingnuicn o ma

!
y A

IS Dapeed - .
form: N Y .

R—Riz—ig-xa" = (i3a)

We shall start from the determined space wave £ found at the n-th approxi-

zation, writing eguation (13a3) with respect to R, in the following nanner:

’

Ry— R, \x—irn— 1‘:1;-‘):'& (13b)

. . . v o . - - - . N
Assuming that in this egquaticn R_=f.,x " -, we shall Iind the number cof the
t

j-th successive approximation assuring the feasibility of the Zirst equation in

the base-line linezr system (3), which earlier was represented in the form of
equation (9). Differentiating che expression for R,» we gec:

R. = ;5 T — B: Pl

We shall :introduce this expression into equation (13a). For this, 9_54-5i

-

(x+iK)=11X. Comparing the equation just derived with the second equation in

system (9), we immediately establish that j=n+l.

In this way, the n-th approximation for the internal reflaction factor is

n—3n+laﬂ'l,that is, this is the relaticn of the reflected wave in the succes-

sive approximation to the space wave taken in the foregoing approximation; this
situation has a definite physical sense. At the same time, function I-’\_1 satisfies
IS

the equation derived from equaticn (13b) by means of substituting inte it the

. -1 . <
expression an'xn *, which is determined from the first equaticon ir system (9):

3n. i
L —1=0, {14

A

’

R,+2ikR, +x/

g'l—’
\\ 2n

which with en—l»6n+l is transformed intc equation (1).

A direct consideration of the process of wave propagation makes it possitle
to establish the fact that the optimal sequentiality of relations of partial
waves 1s the series including even numbered apprcximations for the space
wave, that is, Uons n=0,1,2... In fact, the space wave at the zero approximation
generates a reflected wave (in the firs:t approximation}. This process at any
arbitrary point within the nonhomogeneous medium is characterized by an intermnal

reflection factor R1-61ao'1. In its turn, the wave £;, being reflected in its

82




movement 4s a refulu wave, <reates another space wave a,, wnich then zenerates

a reflected wave 53. In this way, in fact, the internal reflection factor at

8aap”t.

T~
fully characterized by system (§).

the second approximation is R The process described in this way is

Taking into account what has been analyzed above, as well as the tradition

sponsored by applications of the VKB method, in which the zero apprcximation (an

<R YT g 4T o >

approximation of geometric optics) gives two waves which do not interact between

e

each other [Ro(x)-O)],we shall use the following notation in what is to follow

1,

or successive approximatiorns of the internal reflection factor:

{
l Ri=Bia5', Ry=Byal, Ry=pya7, Ry=froy Ry dogoddo ’

3%y 0 i

Using the recurrent formulas (10) and (12), we write:

Ryx) =10, R (x)=G{R0)~—-Js(x], .
- Ro(x) = G{x) RO — Jo (1) I (3)] = i) - S/
; [} -‘-J_(.‘C)J,_(,\'l)‘—T-R{l)).!__(:;i_' ) Pl gl

These formulas bring the reflection factor R(z) at any instantaneous point
t x within a nonhcmogenecus line into conformance with the exact value of the in- :

ternal reflection factor R(0) on the entry plane for the same line. They are

used in problems with an assizned input reflection factor (and synthesis problems),
if the relations in (8) are justified, establishing that R(O)=Rj(0), where
j=0,1,2...

I1f we assume an assigned R(a), that is, the internal reflection factor at
the output of the line, then it is necessary, in the recurrent expressions
Ji(X); J*(x)J;(xl):... for the partial waves entering into the formulas for
the internal reflection factor, to vary the integration limits (instead of O0-x,
use Xx-a). For this, formulas (l6a) must be written in the following form:

Ry(x) =0, R (x)=Q®Ri{a)—I-(x)

:f Ry (%) = Q (%) i R@) [i—/—(0) 4 (x)j =[] = ()= [ tx)] 1w A xa]
- A =T W - @)~ R@ 1+ ()7 (16b) ‘
keeping in mind that expressions (8) are transformed in the following manner: /7

A 7,(@) = 1, (@) = 2 (@)= . . .= 2,(a) =2(a).
H Bo(@) =Py (a)=Psla) =, . . =B, (@ =Bla).
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Here, <he following symbolic notaticns ar2 used:

3 a
a ,'\l\'\'u,).'.\, 12 e deg
A . .
oy - ‘ ale)e D) dx,, Ci)=-e ,
.
14
\1‘ i
3 S N g) JXg a SR i) dry
? . h -
[ ool = \v.\.\',) e N dx, ’x(x,)e 2 dxs.
X %

In solving problems connected with determining a reflection factor according
to a given principle of variation in the characteristic wave impedance p=p(x)

along the coordinate x, two cases are usually encountered:

1. A nonhcmogeneous line (layer, stratum), extending from x=0 to x=a,
matched with an input heomogeneous line, that is, one that has no reflections,
making it necessary to find R(x) according tc a fixed or assigned p(x). FTor
this case, it is necessary, once having defined the desired refiection factor
and terms of Rn(x), to use the following recurrent relatlicns coming out of for-
mulas (16a) with R(0)=9, and which remain zood for the entry plane of <he non-
homogeneous line as well (that is, ar x=a):
Ryt = G- (x, (I7)
Rﬂx!=(hrHJ+Ln——J-LnJ-tn)J.ug}U-J_LﬂJ?Lnﬂ"'. (1Y
Ryv) = Ginfdata = J o doivpy o) --
—J_ o (xpd (x) T xg) -] <
R T T W AT R T W ANT AW SPAV ST A (19)

2. A nonhomogeneous line matched with a homogeneous, input line, that is,
at the line output there are no jumps in the characteristic impedances {:(a)=oa,
where 5a characterizes the output linel, making it necessary %to find the Rn(O)
connected with the input reflection factor r of focrmula (2) according to the as-
signed o=c(x). Taking x=0 from expression (16b), we get for this case [R(a)=0]:

Ry (0= —Q0) /- (D), (20

RyO) = — QN[ (0) =~ IOV () I — ()] N =T () T ()}~ 2D

Ra{0) = — QO [/ = (0) + IOV ]2 (x) [ = (y) = T Q) (¥ I (x)) X
() L (K3) {1 = L QY = () — T - (OV] (V- () D= (e (29)

In a similar manner, it is not difficult to derive from expressions (léa) and

{(16b) the recurrent relations for other variants of the problem cf wave propagation

84




as well, in which neither R(O) nor R{a) is equal to zero. We shall consider an /7

example which clarifies the possibilities represented by using the formulas sug-
gestad above for the solution of problems in the analysis and synthesis of a
ncnhomogeneous line (layer, stratum). The generally accepted method [20, 21] for
the approximative solution to these kinds of problems reduces to the integration
of equation R;(x)+2iK(x)Rx(x)-X(x)=0, derived from the linearization of equation
(1). This method leads to the following result:

— 12| nxy) Ay v 2 vl dy

R in=e ¢ ROy - {ntxpe dxy | 125

1}

It is not difficult to convince oneself that %I(X) is here in fact the first
expression from the series of relations for partial waves given by formulas (15),
as Rn(x)=£1(x)ao“l(x), where pi(x) is determined by the second equation in system
(10), and ao(x) is determined by the first equation in system (6). At the same
time, the equaticn R(0)=2(0)2~-(0) must alsc be taken account of. In this way,
the first approximation for the reflected wave 31(x) is the product of the partial
space wave at the zero approximation ao(x) by the internal reflection factor Rzp(x),

found from the linearized Riccati equation.

By means of manual computation, which necessitates restricting to a small

number of approximations (n), when the following conditicns of the Picard theorem

are a fortiori not fulfilled:

it is advisable and expedient, without using the symmetrical form of the expres-
siosns for the partial waves, to go to the optimal series for them. In accordance

with formula (14), the following waves should be chosen for this:
S Ae . \
TooTae g o0 o JOI T0l e L Soh

which are determined by the expressions (6), (11), ... and (10), (12), ..., and
the full field is determined as:

- . .
(] g R

Yo Ay N T b3 Ua T3 e Ty -

which for 1) and ¥}, 1s in accordance with the position of (1].

All that has been analyzed above holds for a change from a finite, nonhomo-

genecus line to an infinite, nonhomogeneous line (medium). This change brings




with 1t the necessity only for a corresponding sudstitution of the limits on

all the integral exoressions in the derived recurrent formulas.

The Determination of the Internal and Input Reflection Factors /7

We shall consider a geometrically nonhomogeneous, coaxial line with a homo-
geneous filler, for which 3«(x)/5x=0, and the characteristic impedance is o(x)=
=[u(x)/g(x)f5. The driving capacitance and inductance satisfy the following rela-
tions: s(x)=<<61£(x), L(x)=KK61£-1(x), and for this reason, introducing the rormed
function for the charactaristic impedance P(x)=p%(x)§si(0) to the line input, it
is pecssible in accordance with formulas (6), (10), and (11), to write the follow-
ing:

20 (0) = Plx)e' ¥ 1(0), B,(0) = Pix)e”" “B(0),

7 (%) = Py e’ “,:1(_0) - Bi0) 51(.:1) T dx,},
0

Bi(v)= P(v)e™ '™ [B (0) = 2(0) {xixye' ™ dx,J.
5

- . e . 4 3N x! 3

3g(v) = Ply)e’ © {1(0) [I - 57.(.‘:,) e gy ‘x(x,)e‘ i dxz] -
S )

b

F 4
—B(O) [ x(rye™ ™ dx,
M }

X

Balvy= Prje™ ™ iﬁ(O) [l - Sx(xl)e""“’ dx, fx(x,) e~ 2% dx..‘] —
[ 0

é—:(O)Squ)eiJ"‘de,
; J

where the normed characteristic impedance gradient % is expressed by formula («).

We shall limit ourselves to a case where a section of nonhomogeneous line
is matched on its output side, that is, p(a)aoa. For this, R(a)=0 and it is
necessary to determine, according to the given dependency relationship o=o(x),
Osxsza, the input reflection factor r connected with the internal reflection fac-
tor for input R (kg +0),by means of relation (2). Formulas (20), (21), and (22)
are good also for-this case, with the exception that the symbolic notation used

in them now has the following form:

/. (0) sgl.l.(x)e. | 2x (8 — x) dx. Q(o)____elﬁm'
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For the sake of ease in comparing the method presented here with the exact
soluticn for this problem, as well as with the normally used approximation solu-
tion [9], we shall choose the following principle of variation in the character-
istic impedance of the nonhomogeneous line:

a(x) = s10ye” i

For the selected principle %=p, and as a consequence, it is possible to re-
write formula (1) in the form:
R(x)—-2iR(vi— plRH 1 —]] =1, e

We find the exact solution for this equation by substituting into it the
X
expression u(x)=exp[p/R(y)dy]. At the same time, it is transformed into a linear
0

equation with constant coefficients:
@ (x) = Qg —prulvy=0,

Insofar as the sclution to this equation has, as is well known, the follow-
ing form:
o =3 : -
4y = Cyexp f_—l.\'lilcf- ] l{'-—pz"i ~ CaeXp — i K — | xF—p?

the exact solution to equation (28) may be represented in the form:

Riy=—25_ L} @°pG, G=(F—=D)iF--D7 |
14

. - C .
F=expi2k} K*—p’ . D =—. 20
The constant of integration D is determined from the boundary .ondition
R(a)=0:

1 r 1 -1
7 5 -
D= [(Kﬁ_pf) -—x] I_(x’~p2\ S - N] expliai—p
For a semi-infinite, nonhomogeneous line, D=0. Introducing the value found

for D into expression (29), we can determine the desired exact expression:

e

RO) = —-& . Ly = pF1-D)( =D =
p )

ip{e e VT || lgm | B (| TP —n
N @b 2a VRi=p? f—‘ ] {3t

The module of this reflection factor R(0) is expressed as:




The relations determined by the recurrent formulas (20)-(22), taking into

accoun: (2%), have the following fcram in this case:
q
N Plka =@ =) . Id R e
Ryiy=—e loe dy=lge-, g=—, c.=¢e 7 -l

b

a a
iy = 2a= . P miX(g —
Ry = —o' - [pse i~ p Se IR T
. .

J

c 3 a

(e i@ —xy) U'.‘.'x \'e_ [ 7)) ;1'.\’._, ] [-} — p2 j’ex g —=x) dv .
}

5 % )

3 -1

- emh DL I } =igle——q¥2e~—2ixae))[ 1 —gH2ixg—e )|~

v
S

Ry0r=1ig e_— 2g%le_ —iruge ) — %' [i3—~x2u?ye_ — Jixae_]

F-g?iding —en)— @ [— 23 - 2ina(e—— | — o]

For fRn(O)E, we get respectively:
ROy = AB™'S, (32
!

RytOy=AB~ 11 — Ly~ Pl (33)

RMOH=AB4II~—( L;Auégrny TI—T (34
| LM 488849~ (B82S — 3N,

Here:
A=ap, B=ux, S=sinB, C=cosB,

N=S—BC, L=C—-A4S23~", M= 2Cp~ —
— S 1= AY2BY” .

The effectiveness of the recurrent formulas may >e assessad bv means of
comparing the calculation results according to the recurrent and the exact for-
mulas. For this comparison, it is convenient to use two methodologies somewhat
differing from each other and conditioned by the special features of the recur-
rent formulas derived. 1In the first instance, the parameter pa, the product of
the coefficient p characterizing, in accordance with formula (27), the velocity
in the variation of the characteristic impedance p of the nonhomogeneous line
along the coordinate x must be fixed, as well as the length a of the section of

nonhomogeneous line. In the second instance, the parameter px‘l must be fixed;




it entars both into the exact formula (31), as well as into formulas (32)-(3%),
. N - - . . ¥ .
which contain the factor AB 1=pK t, characterizing the degree of ncnhomogeneity

of the line.

é . The first instance corresponds to the conditions under which variations in
the length a of the nonhomogenecus section of the line lead automatically to a
corresponding change in the coefficient p. Thus, a successive increase in length,
that is, a transition from a; to aj, a:, etc., where aj;<ajs<asz<..., occasions the
necessity for considering nonhomogeneous sections of lines with the coefficients
Pis P2y P3s ---, Where pi>ps>p3>..., with pjaj=psajz=...=const. Similar condi-
tions are encountered frequently in practice, when the section of nonhomogeneous
line is disposed between two homogeneous portions with fixed characteristic im-

|

S pedances o and P, In Fig. la, two sections with lengths a) and ay are pictured
together with corresponding curves characterizing the velocity of the variation

1

in the characteristic impedance in the nonhomogeneous portion.

g

Fig. 1. Variation of characteris-
tic impedance in a nonhomogeneous
portion of line for the cases when:
(a) piai=pjaj=const.

(b) p1k;~l=pyk,~!= const.

L’
‘““::, R DR

f
Pt " a‘»—.‘

‘ ﬁ The frequency relationship lR(O)ltf(xa) is given in Fig. 2 by the solid
line with pa=0.5. Here, the broken line plots the results of calculations

—an -
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ig. 2. Comparison of results

f calculations according to the
xact and recurrent formulas for
he relationship between the in-
ernal reflecction factor at input
and the electrical length of a
nonthcmogeneous line for the case
pa=const.

i

~
-~ g ome

crort o O

according to the recurrent formula (32), that is, at the first approximation.

It is easy to see that only where xa>l, the first approximation begins tc give

i
1 & high values for the module of the internal reflection factor.
The secoad 1instance, when the parameter px“l is fixed, corresponds to con- ST
!

ditions under which a variation in the wavelength (frequency) cccasions a cor-

e -

responding variation in the coefficient p. This last Iis necessary in order to
retain as constant the jump in the characteristic impedances (:O and Da) in the

; semi-infinite, homogeneous lines. At the same time, the electrical length (but
not the geometricil length) of the nonhomogeneous section remains invariant across
any arbitrary wave or frequency range. In this way, the relation pK'l charac-
terizes the degree of nonhomogeneity of the line, that is, the magnitude of the
jump in characteristic impedances at a distance equal to the wavelength. A
diagram showing the physical sense of the variation in the parameter oK™t is

- <
4

shown in Fig. lb. Here, p1K] *=p2&k2”‘=ci, K1aj=kzaz=c2, with ¢ and c; being

constants.

We shall compare the computation results arrived at by the recurrent fcrmula,
not only with the exact results, but alco with the computations carried out with
the help of other variants of the method of successive approximations. Several
1 modifications to this method are well known. The most exact is taken to be the
i second variant of the two described in the cited work [9] (pp. 194-203). This
variant reduces in fact to the solution of the Riccati equation by aeans of suc-
cessive approximations. As a result, it is possible to derive the following ex-

u pressions (see the Supplement):




Tk

— TP s

L= —eT prtde VE“I-";, Y]
L8 . .
Riii= —e "7 "\)‘/«(.n') T = Ri(xy) e Ty, 1368)
x
R0 = —-jx(x)eEN‘dx, (37)
¢ ’ - T
<0y = — J'-/. () I—Ri(x) e “de. - (39
)

Taking into account that ®(x)=p, in accordance with formulas (35) and (38),

we mav write:

a
i it ) ip r 2ix(a— H o

Ry = —e s.u‘pet-u,“/;l= o ‘e i x (a z)__lj,’ (ug)

o 2x

X
e o Jezipta 1 v e . (A0
) = —-c (= ——sin ka1 - }-,—wm%a], {4

- N L2k 2 . 2x1

The second .pproximation acccrding to the method described in work [9] will

consequently have the following form:

|
»

' 1 ."' . " B H
;RI(_OH=—"— 2 _1n ”T‘%;Slﬂ?B; =~ :int BT (1)
S B 2B 24 283 i J

The calculation results arrived at by the exact formula (31) and the recur-
rent formulas (32), (33), and (34), as well as according to formula (41) are shown

igs. 3 and 4 for the two cases: (a) a smoothly ncnhomogeneous stratum (pn71=

re

in
=0.3), and (b) a stratum with an abrupt change in features across its thickness

(px‘1=0.8). The data used in constructing these curves are cited in the table.

Fig. 3. Comparisca of cal-
culation results for [R(0)|
according to the exact for-
mula, recurrent fcrmulas,

and according to the method
given in work [9] for the case
px~120.5.
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Fig. 4. Comparison of calculation Fig. 5. Relationship of normed charac-
results for }R(O)! according to the teristic impedance for nonhomogeneocus
exact formula, recurrent formulas, line and the "electric coordinate" kx
and the method given in work (9] for the cases.
for the case px~ =0.8. i) px™ =05, 2) kT 0.3
Table
Xy o ! - } %
1 T
Pix) = expi—2x-1.,3) I T GRS SRR L LR A
‘ i ‘ i
Plx) = expi—2x-0.8) L e e 2 T

The exact solution is shown in the figures as the solid line, the first
approximation by the line made up of dots and bar sections, the second approxi-
mation by means of the barred line, and the third approximation by means of the

line with smaller bars. The point curve shows data for comparison of the calcula-

tion results according to formula (41). From an analysis of the curves, it emerges
that at pK~‘=0.5, the point curve differs only slightly from the curve with large
;. bar sections describing the second approximation for R,(0) and plotted according

; to formula (33). The substantial distortion is noted only in the area of the

first minimum (near the point xa=3.6). However, with a transition to the less

smooth line (px~1=0.8), the correspondence noted above is completely disrupted.

R

. Although the abscissas of the first minimums of the point and the large bar curves

almost coincide, the magnitudes for these minimums are substantially different, /€
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while it is nct cnly the nature of the point curve [plotted according to formula

(41)] that differs significantly from the exact curve, but at xa=z2.5 and xa>4.2,
the module of the reflection factor |R2(0)| becomes greater than unity. This
contradicts the law of the conservation of energy. At the same time, the maxi-
mums and the minimums of the curves plotted according to formulas (32)-(34) for
various approximations, overlap according to their magnitudes with corresponding
extrema of the point curve. The shape of the approximation curves, beginning
with the first approximation, is close in form to the point curve and differs
from it practically only in terms of the period of oscillation T(Xa). With a
transition from the first approximation to the second, and further to the third
approximation, the period of oscillation of the curves goes in a monotone fashion
to the period of oscillation of the point curve [T;(xa)=3.2ka; T2(ka)=3.9xa;
T3(xa)=4.5ka], and then as T . ,(xa)=5.2xa.

Fig. 5 shows the corresponding graphs (see the table) characterizing the
plx)
p(0)
line and the argument xx for the two cases under consideration (weakly and

relationship between the normed characteristic impedance of a nonhomogeneous

strongly nonhomogeneous lines).

Conclusions

The effectiveness of the recurrent formulas derived here is explained by
the following facts.

The base equations (3) for the method suggested here constitute a linear
system of the first degree, and they determine the partial waves o and B, the
full field y=a+8, the internal reflection factor R=ga~l, and with the help of
(2), the input reflection factor r.. It follows from the linearity of the system,
as was noted earlier, that its solution, found by means of the Picard method,
naturally converges uniformly to the boundary functions (an+a. Bn+B), not depend-
ent on the zero approximation chosen (ao, 80) and the initial conditions [a(0),
8(0), or a(a), 8(a)]. The solution for Rn of the exact equation (14) tends toward
the internal reflection factor R, if the function Ba has a 1limit, and insofar
as the latter is always fulfilled at x$0 or x¥w, then the method for determining

(from the recurrent formulas suggested) Rn also possesses the advantages noted.
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The method used in work {9] converges to a direct solution fcr the equation
R'n+ZiAanx(1-Ri_,) by means of the Picard method, which is required in carrying
out the ancillary investigations (see [15], pp. 233-258, 263-276, [22], pp. 23~

27).

Recurrent formulas are characterized by rapid convergence, which is main-

: E ‘ tained with the transition to strongly nonhomogeneous lines (media) with large

' %, as well as with a module of the reflection factor IRn! close to unity; this is
confirmed by the examples that were worked through, and then confirmed also in ¥
the fact that the method in {9] assures a sufficiently rapid convergence only
if » is small, and }Rnlz«l. This latter holds only for a weakly nonhomogeneous i
medium (see [9], p. 200) and for a small jump in parameters or variables at the

output of a nonhomogeneous stratum.

3 As has been demonstrated, the internal reflection factor R is a limit, toward

which the series Rn=8n+1an-1

the Picard method for solving equation (1), it is assumed that R is a boundary

tends. At the same time, in finding Rn by means of

function for the second series.

It should be noted that with any arbitrary x, for the purposes of unifying /€

the program, it is convenient to start from the zero approximation derived assum-

ing # to be small. This makes it possible to substitute calculation relations
differing significantly from each other (VKB, Born, Kirchhoff, et al.) in short

wave and long wave approximations by a system of unique recurrent formulas. This

feasibility, noted above, is explained by the advantages brought about by the
transition from considerations of an equation for the full field 9" Hecyu=0 to a
consideration of equations for a partial space wave o and a partial reflected

wave 8.

In conclusion, we note that with the help of recurrent formulas, it is pos-
" sible to calculate not only nonhomogeneous lines and media both with electromag-
netic losses, as well as without losses, but also nonhomogeneous systems that do

not allow for wave propagation [17].




SUPPLEMENT

Solution of the Riccatti Equation by Means of the Method of Successive
Apporoximations

We transfer the quadratic member of the Riccatti equation (1) into the
right-hand member:
R () —2inx) RE) =2(x) {1 —Rx)]

and rewrite the equation, in accordance with formula (17.30) in work [9], in
the form: P .
PN (e, dx, 12| K () dx

=w(xX)[l — R (x)] e

Ty X0

Rixye (%

dx

We integrate expression (1*) within the limits x to < and use the boundary
condition 1limR(x)=0. Restricting ourselves to weakly nonhomogeneous lines, we
use the meiﬁZd of successive approximations (see [9], p. 197 and 200), taking the
internal reflection factor to be small (that is, |R{%?«l). The zero approxima-

tion Ro(x)=0 is then for successive approximations ([9], formula (17.38)]:

t‘ Xy
iUk den 120K i%y) dxy

~ Ao o Ly, . X,
iy = —e IRENEE _Rﬁ-;(-"x)‘ e dxy. (2%
X

For convenience in comparing the calculation results by means of this
method with the calculations according to the recurrent formulas in the article
for the case under consideration of a nonhomogeneous line matched at its output
(x=a), it is necessary to integrate expression (1*) not over X to «, but over

X to a, and to use the boundary condition R(a)=0:

x £y

-_i2 \.x(x,)dx.a |2\'K(x.)dx.

[xe [1—RE 0] e
x

Xy e

Rpy(a)=—ce dx, . 3%

In accordance with [9] (p. 204), we take xo=0, that is, we presume that an /€
arbitrary observation point is located on the entry plane. Then, instead of ex-
pression (3*), we have:

x ARl
i
[} * g

Ra(x)=—e j'/.(x,) !—R:‘__'l.\'l‘ e
T
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In work [9] (p. 200), the internal reflecticn factor was taken at the input
to the nonhomogeneous line (x=0), that is, Rn(O), which, in the absence of a
jump in characteristic impedances at x=0 when p(0)=p0, will in accordance with
(2) be equal to the input reflection factor r. At the same time, from expression
(4*%), we have: 2

i2 ‘ K (Xy) dxy

Rpid) == — }x(xl)[l— n_x(x,)l o dx,. Gy

[~

In the present work, it was a line with homogeneous filler [«'(x)=0] that

was under consideration. For this reason, from formula (4%) and (53*%), we get:

a
Ry(x)= — o= i ¢ 5 2 (x) [l = R, (r) & T dxy, (6"

-3
Ro(0) = — g () [1— RZ_, (x)] & 5t 1y )
0

The computational formulas (48), (49), (50), and (51) are derived directly
from (6*) and (7*). At the same time, in accordance with the explanation after
formula (13b), it was accepted, as was done in work [9]}, that the internal reflec-

tion factor at the zero approximat:ion1 is equal to zero, that is, that Ro(x)=0.

1The approximation in geometrical optics that takes into consideration two waves
not interacting between themselves.
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(I ON OnD MZTHOD FOR SOLVING LXTERIOR PROELEMS IN ELECTRODYNAMICS /€&
M. B. Zakson

A method for solving first and second boundary problems in electrodynamics,
based on the application of single component Hertz vectors (Bromvich functioms),
is presented. The solution to the primal problems is demonstrated on the example
of calculating several characteristics of planar antennas, and conversely, on
the example of synthesizing linear antennas.

Introduction

As is well known {1, 2, 3, 4], in curvilinear systems with coordinates &,
n, &, the Lamé coefficients which satisfy the Bromvich conditions are:
N

— ‘:::0: /'Ir’-:l.

CRRNNY

the electromagnetic pole outside the regions occupied by the sources may be taken
in the form of a superposition of electrical (TM) and magnetic (TE) waves [Trans-
f ‘ lator's note: It is possible that the author transposed the symbols "TM" and

"TE"]. These waves are completely determined by appropriate single component

: Hertz vectors, scalar Bromvich functionms.

As has been demonstrated, only two kinds of coordinate systems satisfy the
conditions mentioned here: generalized cylindrical coordinate systems and gener-
alized spherical coordinate systems. The Lamé coefficients of these kinds of
systems can be taken in the form: hE-M(C)hl(E,n); hn=M(c)h2(€,n). Despite this
restriction, the Bromvich functions have found application in solving a series of

important problems in electrodynamics.

In the present work, a method for determining, according to assigned sources, {
the electromagnetic field in the form of a superposition of TM and TE waves is

‘j presented, and in addition, several possibilities for solving exterior problems

‘ in electrodynamics for this case are demonstrated.

Formulating the Problem. Baseline Formulas

l’ We shall search for an electromagnetic field of fixed sources in the exterior

region g;, limited within by the surface, c-%, and by one or more surfaces s,




determined by equations of the form f(§,n)=0. At the same time, we assume /8
that in the case C>§, one of the following two conditions is realized:
Et {; = O’ (n
or:
H-.i, - 0' (")

Sources for an electromagnetic field are found in the region restricted by

the surfaces sy and c=%. They consist of the steady volume currents j, as well

as of sources disposed along the surface sy¢ in the case of condition (I), tan-

gential components of the vector EO’ and in the case of condition (II), tangential

components of the vector Hy.

In this way, condition (I) corresponds to the first boundary problem in elec-

trodynamics, and condition (II) to the second.

In the region v, the Bromvich functions may be taken in the following form

(the time dependency is expressed as eWt):

UG m 9= A G )42 Q)
n=0 i n
Vi, v, =N B ¥, mad ()

n=0

where An and Bn are complex amplitudes of the respective electric and magnetic
waves, and the functions wn and 9 satisfy the well-known equations in the work
cited {2].

The boundary conditions for the functions wn(i,n) in the case of conditions

(I) are:
g =0; -iigi =0, 2)
£ on |,
and in the case of conditions (11): 1
wh, =0 —= =0 3

s
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For determining the amplitudes Al and Bn, we shall apply a method similar

to the one described in work [5], which is a modification of the method of Ya. N.
Fel'd [6].
The sought for amplitudes are expressed as: /8
R S jetl dd—') healds |
i . 1) YR —
1. A fwznd g[‘; w '4”’ Q:/;l)i
S» ;e,": 'L"*—g\ l a . hyq)ds
! By — ;
Q ? - u""m hn W'q}l‘ﬂl‘d"-"l: 4
"A' (Il)d,_' \‘ . . ;'l”ds
AP = — Pl WD “'l [
g ]E;”“d. . S.. j\ eg:lrll)ds
Bun _ — — !
" lwl/,m i,” L} ‘7:1;; ' d},‘, I
. where is is the surface current density,
f 3= {12, (i) 2ds,
e, h -~ are voltage vectors of the auxiliary field in the regions
Ve and vy excited at infinity and satisfying the boundary
conditions (I) or (II) on the surfaces s and sy and the
Wronskian:
g () dg M (n
(D @] — ptb —_—g (=
Vi ¢ =90 — 9 (O —

In the case M(g)zl (generalized cylindrical coordinate system), the expres-
sions for A (0 and Bn(I) are converted into the calculational formulas for the

excitation of normal waveguides with ideally conducting walls (5], and the ex-
(11) and Bn(II)

pressions for Ah are converted into the formulas for the excita-

tion of waveguides with walls possessing infinite permeance. ﬂ

At M(Z)=; (generalized spherical coordinate system), the expressions derived
can be applied in the theory of antennas. These relationships may be directly

employed for solving primal and inverse problems in electrodynamics.
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Applications of the Relationships Derived in the Theory of Antennas

The results derived may be applied both in the gzeneral theory of antennas,

g as well as in calculating characteristics of several types of radiating devices.

The representation of an electromagnetic field of an antenna in the form of ;
the superposition of TE and TM waves creates in a series of cases additional pos-
sibilities for investigations, calculations, and the physical treatment of pheno- /8

mena in the theory of antennas.

e, S —

We shall examine the field of a planar antenna disposed within the limits of

a sphere with a radius %, whose center is the zero point of the spherical coordi-

nate system r, 9, ¢. It is apparent that the electromagnetic field of diffraction

antennas in the form of apertures of any arbitrary shape in an infinite, ideally

conducting plane with a fixed field go satisfies condition (I), and that condition

(II) is met by a field of infinitely thin,
tors with a fixed current density is‘ The
antenna aperture is the surface sj in this

In a spherical coordinate system, the

L.‘_f. 80 ¢):

| L

1A

0 2

I3

3
|

8 0

Y A, B HD () P (cosB) '

planar continuous and discrete radia-
section of the plane occupied by the

given case.

Bromvich functions have the form:

) 35)
{

. - - - (W) R (_m) S oS e
Var, ), §) = 2 ‘\-B,ml kr H‘+_(_(.f€.)P‘ (COS‘(:),),-,“.{",- ‘

=i M) 2

(-t
3 5 -—i*
Denoting . = ’/—g-e A b= l

we derive the following expressions for the Bromvich functions in a further zone:

o !
Utr, ®, g)=e" 'Y : : Q) Pi™ (O B)cos m 5

{2=] M=0

e B’m-

sinm»

19)

o {
Vi, 0, @) =€ MY N b P (cos B)inns ]

s m=d

The amplitudes Alm and By D3y be calculated according to (4), after which

the Bromvich functions may be found, and then consequently, both in the further
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zone [see expression (6)], as well as in the near zone [according to formula
(5)1].

The expressions derived in this way make it possible also to calculate the

full radiating power:

p oo NV [ E g e B
- l w | H 0
;‘.—.'1‘ L+
’"‘_(.‘_;'ﬂ‘_( g Ay /=g, g (7
L (l — m) \]‘ I ‘ : 1T7lmi /] 7
m=l
At the same time, it is unecessary to take into account that A{I)=O and
0
3{IDp,
Lo

We shall examine in further detail linear antennas. We shall analyze the

/8

case of an infinitely thin wire antenna of length L, disposed along the z-axis,
Its center is disposed as the center of a spherical coordinate

with current I(z).
an_,

f system. In this case, m=0 and B

The magnetic field for these kinds of antennas in the far zone may be repre-

———

q . Ed
sented in the form: —iar v —i
Yiens =g -
d

:.lllJ

H_=iu)3]

f

The amplitudes of the electric wave types:

-I--E-
.2
‘ 3 ,{°)C (4)(.‘
] L
E -3
+ ;= — oL 2,30, [
. ., e lil=1
(0“:'1 w2 -~
where:
il =1
[.(zH —JL~——ll kz J ] 'lk:L
22
1200 —1
b, @),y = (=1 -———-’ B/, k2

the value of the z-th component of the electric field vector of the wave TMlo

along the z-axis.

] ‘ In this way:
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In the case of an even current distribution [symmetrical antenna with cur-

rent 1(z)=I1(-z)], only odd waves l1=2q+1 remain, and the expression for the ampli-

tudes takes the form:

If the antenna consists of N discrete radiators (dipole) of length dL with

currents In’ disposed at the points Z, then the amplitudes are:
J LA

ol -

v
A= @ =N o
ol 2, -

. =i (Rizu}) ?
where p,=1/4dL.

With a symmetrical array and even N:

()

We shall examine briefly the problem of the number of wave types that must
be taken into account in the calculation. As was shown above, a radiator p dis-
posed at point z excites an l-th wave type with the amplitude:

J | tR2)

A= 152 = h—— 1

1k2) -

If kz-a(l+%) (0<a<), then 1n accordance with [7], we get:

5123 (e 2
|)l X 1) e ”3,

where 8=vl-aZl,

It is obvious that at 1>kz, with an increase in the index 1, the wave
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amplitude abruptly decreases. In this way, in addition to the wave types with

indices less than kz, there are practically sufficient restrictions in terms of

only a few wave types having indices greater than kz.

Consequently, if we take into consideration a linear antenna of length L
whose center is disposed at point 2=0, then, as a rule, it is possible to restrict
oneself to wave types with amplitudes whose indices are smaller than %%+(2 to 4).
An exception involves cases with superdirective antennas ("small-dimension anten-
nas"), where it is necessary to consider waves of higher types with larger indices.
The high directionality in these kinds of antennas is caused by the excitatiom of
these kinds of waves. In order to derive the necessary amplitudes of the higher
wave types, the value of the current I (or p) in these kinds of antennas, as fol-
lows from formula (13), must be sharply increased in comparison with antennas of
normal dimensions. However, the necessity of observing the required relationship
between amplitudes of all existing wave types (including also low wave types)
leads to a feature characteristic for these kinds of antennas of variable-phase

current distribution along the antenna and supplementary increases in the current

amplitudes.

The Synthesis and Design of Linear Antennas

As was mentioned above, the relationships derived may be applied in solutions
for inverse problems in electrodynamics, that is, a determination of a principle
of source distribution according to assigned fields in space. We shall examine
the essence of the solution method for these kinds of problems using the example
of the synthesis of discrete, linear antennas. For the sake of simplicity of ex-
planation, we shall limit ourselves to cases of symmetrical radiation pattern

diagrams, for which the Bromvich functions contain only odd wave types.

Introducing the variable x=cos®, we represent the fixed radiation pattern
diagram in the form of an angular multiplier of the Bromvich function U(x)eL2
{-1, 1]. At the same time, as is well known, the function U(x) may be interpreted
in the sense of a convergence on the average along the section [~1, 1) to a series

according to Legendre polynomials. In this way:

Ly N a. P, v G

-— -t 2.




We shall introduce the coefficients ,i;_1=a>_']": 4

The Bromvich function for the given field in the far zone takes a form cor-

responding to expression (6) for the case m=0:

AN ,
Lix. n=e r —\ I TR PR A RN [
T ok

We represent the linear antenna being synthesized in the form of a series

of N dipoles disposed at the points *zn. The amplitudes A2q+l

determined by expression (12), and the problem reduces to finding the values of

in this case are

Py- Above all, we should note the possibilities for an approximation solutiom to

the problem. Taking the given function U(x) in the form of a finite series:

L'Q(.‘-') =: : a, Py

and assigning a number of dipoles N=2Q in the antenna being sought, such that:

v

— J_ 2 (.k:,3
.'L == brd —_— i‘ \-‘
cami = 00 (2‘7' 2 md ™ -+

L (k.’,,) -

we reduce the synthesis problem to solving a system composed of Q=§ equations

with the same number of unknown Py-

From what has been analyzed above, it follows that in determining the number
N, it is necessary to take into account, in particular, the dimensions of the an-
tenna, in order that the waves excited by the antenna being synthesized with ampli-

tudes A2q+1 N can be ignored. It is especially necessary to take care in doing
q23

this and in checking for the synthesis of superdirective antennas.

It should be noted that this method of soluticn can also be convenient for /¢

synthesizing nonequivalent arrays.

For the synthesis problem, it is also possible to apply a method of solving
a system of linear equations. ’
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We take the given function U(x) in the form of a finite harmonic series:

;- Y - 17
Cugy = o Cysinnay, the)

as=!

where a=%§, T being the expansion period:

o .
c, = \ L) sinnaxdx.
T v

Equalizing the right members of expressions (14) and (17) to each other,
multiplying them by P2q+1(x), and integrating with respect to x across the inter-
vals ~1 to +1, we get, taking into account [8]:

~ .
- 3 (em)

"y W+ —
Ao = —iQ ~—3—)—‘ —_— .
Sq+1 q - ) 'ﬁcn V:Tg . (l&)
Comparing the derived expression with formula (12), we note that if kzn=an,
then: 34 Ca
gy T= o mm———, 19)
D, P {

The antenna being synthesized in this case is an equivalent array of dipoles
disposed at the points zn=t%?.

The antenna length L=%§.
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OPTIMAL DIFFERENTIAL ELECTRIC FIELD DISTRIBUTIONS IN AN ANTENNA APERTURE /¢
R. A. Konoplév, L. N. Zakhar'ev

Formulas are derived for optimal field distributions in an aperture assuring
the maximum magnitude and slope for the major lobes in a differential radiation
pattern for a broad class of antennas.

Introduction

This article is dedicated to finding optimal field distributions in an an-
tenna aperture creating a radiation pattern of tlie differential type. The ampli-
tude-phase electric field distribution is optimized in accordance with the demands
to generate maximum values for the slope in an equisignal direction and amplitudes

for the main maxima in an antenna's differential radiation pattern.

Optimal electric field distributions make it possible to find the maximum
possible achievable parameters for antenna equipment. Comparing them with param-
eters derived from actual equipment, it is possible to give an objective estima-
tion of the quality of development. Together with this, an optimal distribution
may serve as a limit, towards which there is a convergence in selecting an actual
distribution. In several cases, for example, in constructing multielement antenna

arrays, the optimal distributions can be directly applied.

A large number of articles, written both in the USSR and abroad, is dedicated
to the problem of optimizing electric field distribution in an antenna aperture.
Thus, in the works [1, 2, 3, 4], field distributions in linear and round apertures
are found which realize a minimum level of side lobes and a maximum kpd [efficiency
factor]. Several generalizations and advances have been generated in the works
cited [1, 2, and 5, 6]. 1In works [7, 8], optimal coefficients of excitation for
a finite number of wave types in a reflector radiator have been determined, which
make it possible to derive extrema features for overall differential radiation pat-
terns for a reflector antenna. In the works cited [1, 9], coefficients of excita- /9

tion for an equidistant antenna array are optimized.

Some results in the present work are well known, in particular, the optimality
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of a linear electric field distribution in an antenna aperture for a maximum

slope in the differential radiation pattern, and these results will be presented

here only for the sake of filling out the analysis.

Maximum Slope of a Differential Radiation Pattern for a Linear Aperture

The electric field distribution in an antenna aperture creating a differen-
tial radiation pattern 1is written in the form of a trigonometric series:
A =N B sinn=x, (Iy
Aol »
where x is the relative coordinate in the antenna aperture, B, are unknown con-

stant coefficients.

The radiation pattern R(u) corresponding to distribution (1) may be calculated

using the integral relationship:

I
Run) = S.J(x)e“ﬂin )
—i
where u=«asin®, K=%F is the wave number, a is half the antenna aperture, and © is

an angle taken from the normal to the antenna aperture.

Substituting expression (1) into formula (2), and integrating it, we get:

PO nBy .
L —_ )t 3
Rtw) i smu\_ (—1 hrarpr

I

Differentiating this expression with respect to u and taking u=0, we find
a formula for the slope of the differential radiation diagram S in the equisignal

direction:
i

Iw

S -

o

‘-*(— ip B (4)
dind n

-1
The coefficients B must satisfy the normalization condition { A(dx=p,,
Here, Pg is the full power radiated (received) by the antenna. In what is to /¢
follow, we shall take Pe=l. At the same time, the normalization condition may

be written in the form: -l
S Andy -1,

Taking formula (1) into account, this condition is expressed as:
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The Lagrange method is used for finding the conditional extremum. We shall

introduce the new function:
DB, 1) FiB) g )

where g=ZBt21—1 is the normalization condition, u is an undetermined multiplier.

" The condition of the function extremum &(Bn,u) yields a system of equations
with unknown B, and u: 3 :
— 0. g == O‘ . (9)
984 l

Using the second equation from the system so generated, we determine:

B,,-~:-i—(—~l\"——l . ¥

un

The undetermined multiplier u is found from the normalization condition:

wey/ —LNL ()
1 d ne |

i

In this way, the electric field distribution in a linear aperture that as~

sures a maximum slope § in the equisignal direction is:

- . _ )
A = — 2 N i (1)
X d n

1

This expression may be easily transformed into the form:

Al = l'/ 2 )

M

The linear distribution (12) is transformed in accordance with expression

(2) into the radiation pattern:
Ruy=) 6 Shu—ucosu (¢k3)

ul
which is pictured in Fig. 1. The characteristics of this radiation pattern are:
S(0)=0,82; fuuxe = 1,07; tiyaye = 2,081,

The value of S(0) is given in dimensionless units. The slope is given in

absolute units:
| ‘ Sa = 0,82 xa. . (14)
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Fig. 1. Optimal radiation patterns for a linear aperture:
— — — - — with maximum slope at u=0;
——v - witt. a maximum level of the first lobe.

The Highest Value gf the rirst Lobe of a Differential Radiation Pattern for a
Linear Aperture

We shall determine the electric field distribution in an antenna aperture
by means of the conditions for deriving the greatest value of the first maximum
of a differential radiation diagram. We shall find an auxiliary function using

expressions (3) and (6) in accordance with the demands of the problem:

$iu, B, n)= f(uB,) —u (:Bﬁ—- l) =0. (15)
1

The conditions of the extremum of function ® will give a system of equations:

0
=0, —-—0 = B—1=
o8, Z 0 ) (16)

n=1],2...

Solving this system, we find: /¢

nsinUy (
—(aap

B, ———-‘—l)“

For finding the value u-U » the corresponding maximum of the radiation pat-
tern, it is necessary to solve a quite complex transcendental equation 5—-0. in
which the coefficients have the optimal values (17). However, this problem may
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be resolved by means of a simpler method. In fact, the coefficients found accord-
ing to formula (17), with an accuracy to within the value of the constant multiplier,
are in agreement with the coefficients of an expansion of the function into a

Fourier series: AlY) = Nsinby, V = Uppe. ey

From condition (5), it follows that:
!

/ o
l/ l_sln

21

4V=

The radiation pattern corresponding to the distribution according to (18)

has the form:
) [sin(u-—-V) _ sin(u 4+ 1) "
[Tsma Ll w=V PRIt

Vi

It is now necessary to determine the optimal value of V and the value u

R(u) = 120

to which corresponds the maximum of the radiation pattern. From considerations
of symmetry, it follows that expression (20) reaches a maximum at V=u. In this

way, it is sufficient to determine the maximum of the function in the following

manner: e
RWYy.y = Y 1— ‘—“2';— 21
Taking the derivative of expression (21) equal to zero, we arrive at the

transcendental equation: tg 2V = 2V, Ay

(Ja

the solution to which is V=2.247. This solution could have been generated directly

from the system of equations:
Riu, V)=0, Ry(a, V) =0!. (23)

It is easy to convince oneself that this is the case if the value u=V=2,247
be substituted into equation (23). The optimal radiation pattern is shown in Fig.
1. 1Its basic parameters are: S(0)=0.78, RM-1.103, UM-2.247.

Maximum Slope of a Differential Radiation Pattern with a Round Aperture /¢

5 smstn e mm o . o =

We shall examine a planar round aperture, in which an arbitrary field is
assigned:
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A, gy = NN (A,,c05mQ -+ By sinmerd, ., n, 124
0 )

where Aml’ Bml are unknown coefficients, J

o is the Bessel functiom, 4 is the

1-th root of the equation Jm(x)=0.

The radiation pattern (Fig. 2) may be written in the form:

=z |

pD®, »= {{Areerie. (25

—r )

where u=«xasin®; a=1l.

S

Fig. 2. Round aperture.
]

{ 2z ¥\ x

We shall examine the radiation pattern in a fixed plane, for example in the
T
plane y=5:

< |
R(u) - j.;/l(r‘p)ei“’““‘ rdrd P. (26)

In this plane, only those members of the amplitude distribution (24) which
contain the multiplier sinm, have an influence on the formation of the differen-

¢
tial radiation pattern, and for this reason we get:

Taking expression (27) into account, the radiation pattern may be expressed

'\ m Bt Iy ( Im
Ri == 223,,,[(—1) ] IS @ oy

V]
ut—ap,

thusly:

(=) mmQ

It is clear from this that only odd numbered harmonics contribute to the
differential radiation pattern. We shall calculate the slope of the radiation
pattern [formula (5)] in the equisignal direction. Taking into account that:

0 yhenm = |
. 29)

J=' (0) = {

L m=]
2 when
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we get: .
S=f0)=—=i ¥ 8,22 (30)
: and

I

g

The normalization condition, similar to condition (5), is written in the

form in this case:

v v

LI 20
‘ \ A!(r' ¢}rdqu‘ = ——E—;- B’NJ’(’U) JQ(JL.‘, R 3D
0 ¥

In order to determine the coefficients assuring a maximum slope S, we con-
struct the auxiliary function:
DBy, vi=F(B)) +ng, 132)

where g=- 233;1,(:,,)1,(7.,,\ -1 =0.
[¥)

In accordance with the Lagrange method, we have the system of equations:
ad
——— 0_ = o' R (33|
By 8T

whose solution is found:
i 1
By — 2+ — 34
u o 3 dairy) Lo

In this way:
Arg) - ——-'i—sinq NV Lln

. {35}
* 1n; e (7))

From a comparison of this expression with the well-known expansion:

r-2 \-" Jlaun) 136)
and 3 (3]
-

it follows that with the normalization:

[
Avw:wf$NM¢=‘

¥, 137)

oo

4}

with an accuracy to within the value of the constant multiplier, this expression
is in agreement with the optimal amplitude distribution of an antenna having a
linear aperture. The radiation pattern corresponding to distribution (37):
Ry '
Rmzus-l:‘“-). (38)

is picturedin Fig. 3. The basic parameters of this graph are: S(0)=0.88;
fM-1.26; Um-2.3.
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Fig. 3. Optimal radiation patterns for a round aperture:
with maximum slope at u=0;

with a maximum level of first lobe.

Maximizing the Amplitude of the Major Lobes of a Differential Radiation Pattern

We shall turn once again to a radiation pattern [formula (28)] formed by an
arbitrary electric field distribution [formula (24)] in a round antenna aperture,
and we shall select amplitudes Bml of the field disposition in the aperture in
such a way that when fulfilling the normalization condition:

- » !
=N N B AGaunrdr—1=0 (39)
mm0 [ =0 0
a round aperture will create a differential radiation pattern with a maximum am-
plitude of the major lobes. As earlier, we shall use the Lagrange method and in-

troduce the auxiliary function:
O(Bmlt u, P’) = f(u- Bnl) _"l“'g'

Setting the derivative of the auxiliary function in terms of By us and u
equal to zero, we generate a system of equations for finding Bml’ UM and u (UM is
the value corresponding to the direction of the principal maximum of the radiation
pattern): a0 av

a=0 5 =0e=0y.

From this system of equations, it follows that:




b = 2 Sy (1)

i y K .
¢ i 12— 1,"[) J o \Tens)

Va0

In expression (40), the value V=UM is the solution to the transcendental
equation derived by substituting the found values of Bml into the equation %%.
The solution to this equation represents substantial difficulties; however, the

value V may be found by means of an indirect method.

It turns out that if the function:
Alr. g) =sin{{'rsing) 41
is expanded into a series similar to series (24), the coefficients of the expan-
sion derived with an accuracy to within the value of the constant multiplier are
in agreement with expression (40). From this, it follows that the electric field
distribution (41) is optimal, that is, it assures a maximum value for the first
lobe in the differential radiation pattern. The radiation pattern corresponding

to the optimal field distribution has the form:

B } I I'Jl(u—l')_./;(u-'—l»]' i
R === Uamr v !
-
The value V= Uyaxe 1S determined in the same way as in the foregoing case.

We take u=V and find the value V at which R(V) reaches a maximum value.

For this, we solve the equation.

SRV _ a2 (2l )l 0. 143)
v at [ l/

This equation reduces to the transcendental equation:
Ji (21 = — J32V), t44)
from which it follows that V=2.568. Thus, the value for the first maximum of
the radfation pattern is RM(u)=1.33, and the slope of the radiation pattern in
the equisignal direction is S(0)=0.82.

[

The graph of the optimal radiation pattern is presented in Fig. 3.

The Case of an Arbitrary Aperture

Comparing the results derived earlier, it is not difficult to note that the
character of an optimal field distribution does not change with the tramsition ]
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from a linear aperture to a round aperture. A similar result may be derived for

a square aperture. From this, it follows that the optimal field distribution under /1

consideration here does not in general depend on the shape of the aperture. Another
special feature of the derived optimal distributions is their dependency on the
coordinate of the plane (:=0) in which the differential radiation pattern is

formed. This is explained by the fact that the optimal field distribution must
assure a maximumorientation in the plane y=0, which is achieved with a uniform field

distribution along the x-coordinate in the antenna aperture (Fig. 2).

We shall attempt to generalize the presumption made with respect to the opti-
mal field distribution for an arbitrary aperture using the example of deriving the
maximum slope. We shall consider that a field distribution depends only on the

y-coordinate.

We shall examine an arbitrary aperture (not necessarily a singly connected

aperture) whose extent along the y~coordinate takes up a portion along the OY-axis

from -1 to +1 (Fig. 4). For calculating the radiation pattern in the plane x=0,

Fig. 4. Arbitrary planar aperture.

it is convenient to introduce an equivalent aperture with respect to the y-coordi-
nL nate (Fig. 4). The shape of the aperture will be described essentially by means
of the positive function wz(y). Then, the radiation pattern in the plane under
consideration may be represented in the following form: !
+!
Rur = [§ Atx pyedudy = §v29) 400) e dy. (45)
S -1
Insofar as it is differential radiation patterns that are being considered

here, we shall assume first of all that:
+1

' ‘ RO = [ v AW dy =o. (46)
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From condition (46), it follows that the zero point of the coordinate system
in the equivalent aperture should be chosen in such a way that it overlaps with
the "center of gravity" of the adduced distribution. The expression for the slope

S at u=0 may be easily generated from expression (45):

1
S(©) = 5 ¥ (5) 9A () dy. - 47
We shall introduce the normalization condition: /1
1
g fvmpawda—1-=o.

In order to abbreviate the notation, we shall denote:

CWAWY) =By, $(»)y =¢¥). 49)

We shall represent the unknown functions B(y) and ¢(y) in the form of Fourier
series: -
S == :Ancosn:y-i—B,,sinn:y

v (i

q(wA::Ew_aﬁn:y——w,ﬂnnzy

v

!.
|

Taking into account formula (50), expressions (47) and (48) may be trans-

formed into the following forms:

S (0) = : Afl onsn — .Nfl ‘#l ‘ .
0 O

g;;:r‘n‘"i:—Bi—] ;0‘
0 ¢
In accordance with the Lagrange method, we form the auxiliary function:

P=F+ug 52

The system of equations:
ad ad

— =), — =, :.-.0l -3
04, 0 o8, 0.2 )’ 2
makes it possible to determine the unknown constant coefficients An' B :
] 1 -
An=_2;'01' Bn':: E—\p, 154 ‘

From the expressions in (54), it follows that in the case of an optimal elec-
tric field distribution in the aperture B(y) and ¢(y) with an accuracy within the

value of the constant multiplier, they should be in agreement, that is:
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B(y) = Tm(y). 1351

or, taking into account formulP (49):

4 X —— 36

| )] rl A (361
] The constant multiplier may be easily determined from condition (48): /1

| | .
T.?T == __7_l_-___= . {57)

‘/ j 3 (y) yidy
-l

In this way, the optimal distribution assuring a maximum of the slope S in

the equisignal direction does not in fact depend on the shape of the aperture,

e -

and is always equal to:
4 . (38)

1/. S'«’(y)y’dy

-1

The slope S corresponding to this distribution is:

T
! $10) = \/ § v 9y, (59)
—i
‘ Conclusions

:_ 1. For a broad class of antennas, expressions have been derived for opti-
‘ mal field distributions at an aperture which assure a maximum slope for a radiation
pattern of the differential type and a maximum value for the major lobes of the

radiation pattern.

2. The phase characteristics of the field in the aperture for assuring

maximum values of S(0) and Rm(u) must be constant.

3. The optimal distributions derived depend only on one coordinate in the
antenna aperture, the coordinate corresponding to the plane of the formation of
the differential radiation pattern, and it does not depend on the shape of the

aperture.
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CALCULATING THE CHARACTERISTICS OF A JUNCTION OF TWO WAVEGUIDES BY MEANS OF
A RESONATING COUPLING APERTURE

(]
G. A. JPvstropov, A. M. Evs%év

A problem in coupling two waveguides by means of a resonating coupling aper-
ture is solved. The equivalent circuit for the junction is determined. The cal-
culation methodology for the parameters of the equivalent circuit is cited.
Particular cases of junctions of rectangular waveguides and a rectangular wave-
guide with a round waveguide are examined. The theoretical conclusions are com-
pared with experimental results.

Introduction

The coupling of waveguides by means of resonating coupling apertures is
widely used in the creation of antennas and other devices for superhigh frequen-
cies. In order to carry out computations for this kind of equipment, it is neces-
sary to know the equivalent circuits for the various waveguide junctions by means
of an aperture, as well as the coupling of the parameters of the equivalent circuit

together with the geometrical dimensions and the wavelength.

Despite the fact that a coupling of two waveguides by means of an arbitrary
coupling aperture may be computed for the most part, still it is possible to gen-
erate a simple equivalent circuit and computational formulas only for a narrow

resonating (half-wave) aperture.

Works [1, 2, 3] are dedicated to the question under comnsideration here. The
methods for solution used in them, however, did not make it possible to derive
formulas convenient for engineering calculations, nor equivalent circuits. In
this article, a determination method for the characteristics of a junction of two
waveguides by means of a resonating coupling aperture is used; this method was
developed in work [4] for a rectangular waveguide and aperture radiating into a
half-space. The results from work [4] are generalized for a waveguide of any
arbitrary cross section and for a resonating aperture radiating into another wave-~

guide.
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The Formulation of the Problem and the Method for Solving It

The possible methods of joining waveguides by means of a coupling aperture
are presented in Table 1 (using the example of rectangular and round waveguides).
For the sake of simplicity, we shall assume that in the waveguides only a principal
type of wave may be propagated. The field source in the problem under considera-
tion here is a wave being propagated in a waveguide 1 or 2 and incident to the

coupling aperture from the left.

Under the influence of the incident wave (with an effective amplitude of Ag
and power PO), a voltage with a complex amplitude U is induced in the aperture.
Once the coupling aperture has been excited, it begins to radiate energy both into
waveguide 1, as well as into waveguide 2. The amplitudes of the waves induced in
the waveguides and being propagated to the left of A and to the right of B away
from the aperture are expressed thusly:

A,=U(p,+ie) |? (1)
BL2==‘_C/(ph2——iqL2}j

These formulas were derived in work [4] for a rectangular cross section wave-
guide, but it 1s an easy affair to demonstrate that they are justified also for
a waveguide of any arbitrary cross sectional area. The parameters Pi,2 and 4,
depend on the geometrical dimensions of the waveguide and the disposition of the
aperture on it. We shall consider that the problem of excitation of each waveguide
by means of the coupling aperture with a voltage U at the center has been resolved,

that is, the parameters P> and ., have been found.
k] ]

The power of the wave being propagated in the waveguide:
Py = S o (22>

where S1 2 is a coefficient depending on the shape and dimensions of the cross
4

sectional area of the waveguide and the wave type.

In this way, the power re-emitted into one of the waveguides with power
delivered to the other is:

) » vl '
Pusa.1, 2= 281, Ui ( p?.z+qi.2)=1£-2- (2b)

lHere and further, the indices 1 and 2 relate to the first and second waveguides
respectively.
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Table 1

Equiva- |

Notes /1

fray by py - Ch

N !
nn. Diagram of junction "lent Conductance
—_— circuit
1 2 3 4 5
6 4
1 PN oL q? Py, ,and q ,
7 &= dbyBs 244t are calculated
& ey according to
formula (11)
Balb, 1 —3jsinta,
&= 3 .
32820y 1 —3isinte,
2 .
4 cos (% 8, sin 11)
cos (-—;— fa sin a,)
9, 9 p1 and q) accord-
3 g =2 haby P4 ing to formula (11)
P22 b % q2 according to
formula (15)
q2 according to
32 da h: q":. fomula (15)
4 G=21-"— p1 and q1 accord-

ing to formula (11)

/1

a7 28 a h 2
sha gy

.ormula (15)

—— .
3 o Db 9 11 according to
7 A grahy formula (15)
. p2 according to
] formula (20)
A 2 according to
’ P J2faby P ormula (20)

1 according to




L PN ¢ e

p; and q; according

agh, P4 to formula (11) /1
- sr=+ 3, s be 2 p2 according to
2 formula (20)
8y by P p1 and qi according
g2= 9 f l (11)
28 a, b 2 to formula
8 Pante pi+df p2 according to
formula (20)
31 @y by cos? 2y sind ‘;—1 L
&= : -: X
B4 aq b, cOs3 a, sin® Z Iy
X A
cos? (—— cos a,)
9 X Y X
a A :
coss (T a—' €Os ﬂ’)
(Eﬁ)’—cos' 1, )
P DA VL
- 2g, \*
(T‘) —costay
q; according to
28,46, 4} formula (15) .
&= 3 b i
10 R S according to
ZoQ‘[(,xp) =1 formula (22)
Q acc. to form. (23)
q) according to
i formula (15)
Z°Q‘[(axp) "'] S according to
11 gy = Tk sq formula (22)
1hi=a Q according to
formula (23)
p1 and q; accord-
4 8, . o2 ing to formula (11)
o = 25a,bS (i --g}) S according to /1
12 p onz[(_“_)z_.l} formula (22)
G ’ Lxp Q according to
ley N formula (23)
- \ Y & Ik,
N S iy p1 and q, accord-
N | ¢ v ing to formula (11)
y pye= U,’ z,Q [(’;) —‘] i acc;rd::rzig)to
- s orm
- naby S 1A Lad) cor

Q according to

formula (233
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where:

U0=|U| is the effective value of the pulse height at the center of the aperture.

In this case, if the coupling aperture is cut on the face end of the wave-
guide, or if there is a plunger located in the shoulders of one of the waveguides,
the pulse heights of the waves in formulas (1) must be taken to be equal to zero;

this must be taken into account by excluding the two from formula (2b).

It is not only the power re-emitted into the waveguide that is of great inter-
est, but also the phase of the re-emitted fields. For waves re-emitted respec- )
tively to the left and to the right of waveguide 1 and waveguide 2 (with an index /1

of two) or conversely (with an index of omne), we get:

: 9, 2 . 9, ;
¥ o, =argUfarc‘.g——-—pl 7 Y =7 3r8 U—arctg———=.

I o=

The phase of the voltage U may be determined by using the reciprocity prin-
ciple, from which it follows that the phase shift between the voltage in the
aperture and the wave in the waveguide remains comstant, both for the excitation
of the waveguide by means of the aperture, as well as with the excitation of the

aperture due to the wave being propagated in the waveguide:

, P a=ia
U-_—'Lo

Pf. 2 "Vf. 2

e

Paa amtggl»%ang;i.
1 2

¢ ==-+arctgt —arctg i 0
;n = B
Py (2]

under the condition that the wave is incident on the aperture from the left in

waveguide 1.

Formulas (1), (2), and (4) are in agreement in form with similar baseline
formulas in the work cited {4]. For this reason, all the results of this work,

including problems in the matching of an aperture with a waveguide, hold for the

case when the aperture is cut in a side wall of an exciting infinite waveguide.

In this way:
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The power of the wave incideni. upon the aperture is taken to be equal to
unity. The equivalent connection circuit is shown in Fig. 1. The electrical

lengths are:

) B 9. /
Gl:t—-(?).: -?-—.ll'ctg';,!—'—!. (]’
4, G-
Fi Fig. 1. Equivalent connection cir-
cuit of waveguies (waveguide being
Ljy' excited with aperture in a side
wall) joined by a resonating coupling

o = aperture.

For the analysis of the functioning and computations for the devices using

the coupling types considered here, it is perfectly possible to use the methods

analyzed in [5, 6].

If the aperture is cut in the face end of the exciting waveguide 2, the re-
sults of work [4] are not applicable. 1In this case, the voltage U may be found
from the equation for the energy balance having the form:

(B

Pm'—" mL+Porpv

where Pﬂan’s1,2AS; Pyan is determined by formula (2) and: /3
Porp— St 2(Us) B2 + 41 2— Ao} (9)

Here, it has been taken that the reflection factor off the face end without

an aperture 1is equal to 1.

From expressions (2) and (8), we get:

4, 2 l

Posst o= o I

(10)
g.2=S200 2+ o) Rea, '

The formula for Pusn 1,2 is in agreement with the expression the power
1]




T ——

23

dispersed in the load for a double-wire line with conductance g, ,- The power
b

reflected from the aperture [formula (9)] is also in agreement with the power

reflected from the load g; , in a double-wire line, that is:
s

1—g1 5
Porp= (l -+ &5, 2) )

.

In this way, the equivalent circuit of a waveguide with resonating coupling

aperture in the face end is a double-wire line with load g, , (Fig. 2).

g Fig. 2. The equivalent connection circuit
of waveguides (waveguide being excited with
aperture in face end) connected by a resonat-
ing coupling aperture.
The methodology derived here is used for calculating the most widely used
types of coupling two rectangular waveguides, as well as for connecting a rec-
tangular waveguide with a round waveguide. For this, it is necessary to determine

&

the coefficients P, o0 9.5 and the radiation resistance R21 ne
b4 L4

Derivation of Formulas for the Coefficients of Excitation and Radiatiom
Resistance of an Aperture Cut on Rectangular and Round Waveguides

We shall examine the case when an aperture is cut on the side walls of a
rectangular waveguide. We shall use the formulas derived already in solving the
problem of the excitation of a waveguide by means of an aperture and the for-

nulas cited in the accompanying works.

When exciting a waveguide by means of an aperture cut into the long wall of

a waveguide and inclined on the bias (Fig. 3a), from work (4], we have:

’
COS Ty 7T
e b [
= 2 sina —
Pi. 2 k81, 24) 25, » cos(ahz "’) 2 . M, 2\
x
e A T ors, oot b
‘ €08 sy, 2l RCos 1y, 5 oS3 27y cos 27y i
- - i
! ) / 2.,9 ]l xa, 2 3 2 / St 2 | N, » "
— haandi) 1 - \
\ « LR NIETIVRS |
(i
’ n - . " -
sin(5—2, 9| | costi g cosn:, 2
¢ = _ 2 sinz‘ 2 - - — ; - | =~
' 2 K31, 201, 201, 9 I ( §,2\ L et
‘ =/ ‘\\ Kk
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Here:

M, 2

avy

~

=K3 ,

Means of exciting waveguides by means of an aperture.

]

1 L 1 .
=K3 ,c082 ,+ -al—.-;sm 7.

b1 4 .
cosx, ,— ——sinz, .
LT E

the indices 1 and 2 relate to the first and second waveguides respectively (see

Table 1).
The power P, , being propagated in the rectangular waveguide is connected /1
’
with the effective voltage amplitude of the electric field by the formula:
A
p __L_L;ﬂpl 20, 201, » (12)

where Z0 is the characteristic wave impedance of free space.

Consequently, for a rectangular waveguide:

b
YL L L et (13)

As a result, from formulas(12), (1), and (2), we get:




A I+ e 1T

EEEE——

F . e - te ot m e ww vnw RS - oo A S o :
- X O . -t 3 T, - . A

Z
R, ,= 2 . (14)

o1, 2 - 3 3
3, 0ay, 26 2 P, 4T,

If the inclined aperture is cut on the narrowwall of the waveguide (Fig. 3b),

from work (7] and formula (1), we get: p, ,=0,

X .
2xsina, , cos —2— 8;, gsinzy o

o (15)
x5y, 241, 201, 2 L—Bj, agin’a, ;

9, 2=

and the radiation resistance is:

Zs 16
Bl 28, 20, 20, 2 (18)

Rn.z=

We shall derive formulas for determining the parameters Py , and q 5 for
s H
the excitation of a rectangular waveguide by means of an aperture cut into the

facing end (Fig. 3c). We shall use the method used in work [8] and applied in [4].

The components of the fundamental type wave in a rectangular waveguide are
expressed thusly:
E,= A.,cos(—’-‘- z)e Ao
R4 a

H,=“+.f-;% cos({'; zje’'f 1. (17)

. x . (K EAPSYY

He = —# sin{— 2)e
* Aoml. (G }

The minus sign in these formulas relates to waves being propagated in the

direction of the increase in x, and the plus sign in the direction of decrease.

We shall assume that the aperture is narrow and resonating, so that the volt-
age along it changes according to the law e=Uccsix. The wave excited by the aper-

ture in the waveguide is determined by expressions (17) (with a minus sign), if

they are multiplied by the coefficient of excitation C. Using the method ana- /1
lyzed in work (4], we get the following formula for finding this coefficient: -
t » ;
3 e — E,H,| dS. (i~ !
c mjl‘.l 5
mean

Here E; is the field in the aperture and induced by the aperture in the wave-
guide. The field of the wave incident on the face end (without an aperture) and
reflected off of it, that is, the sum of the space and reflected waves (17) are
used as an auxiliary wave field, taking into account the fact that the reflection

factor off the face end is equal to 1.
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In this wayv, H» in formula (18), with x=0:
24 5, )
H. 253, a cos '.1 - AT
- zo lnz'-y

Taking into account that the aperture is narrow, after integrating expres-~

sion (18), we get: -

/ '
— s 1
Co Ak Cos(‘“:,a QCS"” . < A
c-tL 003 gy LS

PyZy ( cos 2y, 2)- — Kt o

g1, 2

The wave amplitude induced by the aperture in the waveguide is:

\

C o
coslT— ~ cos -, ) .
. ' T - . -
A=Cly=U —= ’ : cosz, L eon ——
' a, 26y 2 3 e BRI I S
Pt R o ) - :
BT T
and consequently:
’ ) : !
—_ i {
2Kcos 1y 4 cos( 2 @y ST l
Pue= S50 T It L
COS 7y o] — N~
ay ‘--)
[ Shat TR ’
4, .=0

Taking into account that the aperture radiates only into one shoulder of

the waveguide, the characteristic wave impedance is found from the expression:

Ry =73 0222 2 : =h
o 31, 20y, 201, 2P0, 2

The problem of the excitation of a round waveguide by means of an aperture
cut in the face end (Fig. 3d) may be solved in the same manner as for the case of

a rectangular waveguide.

For the case of the disposition of the aperture symmetrically with respect
to the radius of the cross sectional area, a wave is induced which is oriented in
such a way that the vector E passing through the center of the cross section will
be perpendicular to the aperture. Expressions for the components of the tangent
and reflected waves in a round waveguide may be taken, for example, from work [9]. /1
Formula (18) for the coefficient of excitation is retained in this case. The
auxiliary field on the facing end is determined by the expression:

Hy= =240 (/1= (=] dika),

An arbitrary Bessel function can be expressed [10] thusly:
2J1(x) = Jo(X) — J2(¥).
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For calculating the integral (18), we take the Bessel function in the form

of a series [10]:

1 ==
\\ Pl
) — v
Ia (Ke) do =1 m! (n <+ m)!
ma=s

After computing the integral, we get the amplitude of the field induced in

/(‘T’T“:
the waveguide: .4=_L’_+'£__

3 Q.
where:
x o 1Y g2
3———Zo—.—ﬂ{r’——-)lx(l¢cfo), (22)
4 rrg K?
LN, gy @m0 @)l
Q==+ NVen N7 (m1)s (m + 1) K27
me=
SO YY) S ey (23)
s 77 (2m — 2p)

where T, is the radius of the waveguide.

The power radiated into the round waveguide is:

A\
— =1
(’KP)

Pnu:A’S:L’% S

Q.

Consequently:

R, = (29)

(5 -]

,,=__'s_]/(__A:_;\"_1Q, q=0. (25)

Characteristics of Concrete Types of Junctions of Waveguides by Means of /1

a_Resonating Coupling Aperture

On the basis of the methodology and the expressions cited above, it is pos=-
sible to generate computational formulas of the conductance and electrical lengths
entering into the equivalent circuit for possible types of couplings or junctions

of two rectangular waveguides and for couplings of a rectangular waveguide together
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with a round waveguide (see the table). It should be noted that in coupling a
rectangular waveguide together with a round waveguide (if the aperture is cut in
the long wall of the rectangular waveguide), it is possible to assure radiation
of all the power out of waveguide 2 into waveguide 1 at any orientation of an Hj}}
type wave in waveguide 2. 1In this case, the field phase in the shoulder Q of the
rectangular waveguide is equal to y, and in the shoulder &§-(-y), where Y is the
angle between the vector E passing through the center of the cross sectional area
of the round waveguide and perpendicular to the center line of the rectangular

waveguide.

For this, it is necessary to cut two perpendicular apertures in the waveguides
whose conductances are equal to unity (in the figure in the table, the second aper-
ture is shown by the broken line) with a concomitant fulfilling of the condition

P1=q1, which follows from formulas (3) and (10).

Calculation Results and Results of Experiment

The formulas generated above were checked experimentally in a series of parti-
cular cases. The first case relates to the coupling of two rectangular waveguides
by means of an aperture in the narrow wall of one and in the facing end of another

(Fig. 4). This type of coupling is distinguished from the type examined above in

Fig. 4. Coupling of two rectangular waveguides by means of a resonating
coupling aperture, experimental study.

that the cross section in which the apértute has been cut was not completely

metallically coated, and the aperture goes through to the broad wall of the wave-

guide.




The computational and experimental relationships of conductance to the angle /1
of incline of the aperture for waveguides of various cross sections are shown in

Fig. 5. As may be seen from the figure, the experimental and computational curves

;.é differ from each other markedly. This is explained by the nonfulfillment of the
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Fig. 6. Computational and experimental
. Fig. 5. Computational and experimental relationships of conductance and the
i relationships of conductance g1 of an angle of incline of an aperture dis-
aperture and the angle of incline of posed on the narrow wall of one wave-
i the junction (Fig. 4). guide and the facing end of the other
[ experimental points) at: (the figure in the table) with a coup-
b a.<e gZA=gﬁ ling of rectangular waveguides (¢=90°;
y @ =0q =00
Q) a=a; & b <b aj=az=a; aj=ap; and bj=bz).
Key: (1) computational .... are experimental points.

conditions of the theory (complete metallization of the cross section of the
waveguide in which the aperture 1s cut, and the placement of the aperture com-
pletely on the narrow wall of the waveguide) in the experimental process. However,
when the computational curve is multiplied by the constant coefficient 0.68, the
curves derived from this practically overlap with the experimental curves. In the
cage of larger angles of inclination, when the aperture is completely disposed on
"the narrow wall, the experimental curve begins to approximate the computational

curve without having to use the correction coefficient (curve b).

If the cross section of the waveguide in which the aperture is disposed has

t ‘ been completely metallized (the aperture is completely fitted on the narrow wall of

the waveguide), the values for the computed and experimentally measured conductances
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agree with an accuracy not less than 2%. The relationship between conductance

and the angle of incline for this case is shown in Fig. 6.

A junction between a rectangular waveguide and a round waveguide was also
studied experimentally. The coordinates of the aperture on the broad side of the
waveguide and the size of the cross section of the narrow wall were computed for
the conditions g,=1 and p;=q;. The resonant length of the slot aperture, as in
the foregoing case, was experimentally selected. For one aperture, the ksv [stand-
ing wave ratio] <l.l1. In the case of a cross-shaped slot, the ksv was dependent
on the orientation of the wave in the round waveguide; this is explained by the
reciprocal influence of the slot apertures, which was not taken account of in the
calculation. Withdecreases in the widthof the aperture, the relationship cf the ksv
on the wave orientation decreased. For example, for apertures with a width of

1.5 mm, the ksv changed from 1,5 to 1.8.

Conclusions

The formulas for the calculation of the characteristics of the coupling be-
tween two waveguides by means of a resonant coupling aperture derived in the
article give a computational accuracy sufficient for all practical purposes. In
the experimentally confirmed cases, when the experimental conditions corresponded
to the base presuppositions of the theory, the computational accuracy was not less
than 2%.

The formulas derived in this way make it possible to compute the position and
orientation of apertures on waveguides according to fixed coupling characteristics.
However, the calculational methods for the resonant length of an aperture are lack-

ing with sufficient accuracy in the cases considered here, and the resonant aper-

ture length must be chosen experimentally.
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CALCULATING FOR A ROUND WAVEGUIDE WITH AN AZIMUTHALLY MAGNETIZED FERRITE
ROD

R. R. Yurgenson, N. G. Teytel'baum

On the basis of calculatioms carried out with the help of a computer of the
propagation constant of the principal wave type quasi-H;; in a round waveguide
with an azimuthally magnetized ferrite, an analysis of the relationship between
the differential phase shift and the various parameters of the ferrite and the
waveguide in the frequency range is presented. Solutions for the field components
of the electromagnetic waves are derived in the form of generalized power series.
Series and particular cases are transformed into Bessel functions or into a
Whittaker function. Recommendations on selecting parameters for equipment de-~
signed to generate optimal phase shifter characteristics are given. The quality
factor and losses are assessed in an approximative fashion.

Introduction

Recently, a series of works have appeared in which a fast-acting, unilateral
ferrite phase shifter using a ferrite with a rectangular hysteresis loop, a so-
called "bistabile" phase shifter [1, 2], and results of experimental studies car-
ried out are cited. Normally, this kind of phase shifter is a rectangular wave-
guide, along whose axis a ferrite tube is disposed, or a set of rings magnetized
in the azimuth direction. It is controlled by current pulses passing along the

conductor loop.

A phase shifter is distinguished by its very low level of controlling mag-
netic fields, insofar as the demagnetizing factor of the specimen is equal to zero.
Despite the fact that a similar phase shifter has found wide application in prac-
tice, it has not been calculated theoretically, up to this point, due to
the complexity inherent in this problem. In work [3], the possibility of creating
a "bistabile' phase shifter in a round waveguide with the use of a symmetrical
magnetic wave (Hg;) is examined. This kind of wave is most favorable from the
point of view of the interaction of the ferrite with the SVCA  [superhigh
frequency] field with azimuthal biasing. The authors present a method for solving
the problem and for calculating the differential phase shift for a ferrite tube
attached to the waveguide walls. Obviously, this disposition of the ferrite is
far from being optimal, but even in this case, quite large phase shifts (on the
order of 0.3 rad/cm) are derived. However, the difficulties connected with
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exciting a symmetrical wave in a round waveguide significantly lower the merit /1
of this phase shifter. In the present work, problems in the theory and calcula-
tions for a "bistabile" phase shifter in a round waveguide using the quasi-H;;

principal wave mode are examined.

The Solution to Wave Equations

The theory of electromagnetic wave propagation in a ferrite medium magnetized
by means of an azimuthal magnetic field, not depending on the radius, was con-
sidered in some of the works cited [4, 5]. The authors of these works restricted
themselves to the cases when the field components do not change in the azimuthal
direction. In work [5], it was noted that if the dependency of the field com-

ponents on the coordinate angle is expressed in the form ein¢

, then a system of
second order differential equations is derived for the longitudinal field com~-

ponents.

In a cylindrical coordinate system (r,¢,z), the tensor u has the following

form for an azimuthally magnetized ferrite:

" 0 i
fell=1uoll O 9, 0 : ,
—in, 0 u |

where:
P.:T' [

where vy is the gyromagnetic ratio, w is the angular frequency, and M is the

residual magnetization,

H
pe = 4% 1074, m*

For the residual magnetization of a ferrite that is less than the saturatiom

magnetization, it may be approximately assumed that:
P =B, (3
From the Maxwell equations with the time dependency relationship eimt and

a relationship to the z-coordinate expressed in the form eiyz

in¢g

» and a relationship
to the ¢-coordinate expressed in the form e , & system of equations for the

longitudinal field components may be derived in the following manner:
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B+ LB+ (1— S )E— = H=0
¢ #? ¢ . (4
. ‘ s a ﬂ’ "l
PP TP
H,+PH,-¢-( ¢+ = P,)~ LE,
where: /1
_dnonaty o _g_
3— x v M ?M ’

p=kr is the radius normalized for the wave number, 32=wzsuuo-Y2, with vy being

the propagation constant along the z-axis, and € 1s the dielectric permittivity
of the ferrite:

2
©Seppep X
c= .,déa"_’l‘o" (53
"F' u

¢ and o are dimensionless magnitudes, with the prime symbol denoting differenti-
ation with respect to p.

The transverse field components are determined according to the longitudinal1

components in the following manner:

e )
E x(Y dp P |
H =_l((“ dE, iny H,)
) . e P o (6)
5,=_L('_{'_L5,+,,pp,¢%*£s+m.ﬂi
[ P p x
i { ineen ,dH.-__m"Pallu)H
H,S—‘-( —‘——P E‘ Y"_dp """' 2

Getting rid of Hz and Ez successively from system (4), we get differential
equations of the fourth order for the longitudinal field components having vari-

able coefficients and which may be writtem in the form:

Sra@y=0, oo D

vy
where:

1 a4’
y=+E # e

1 (wt~vz+nd)

lHere and in what follows, the factor e is left out.
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i) =1nr1d—0op . ®)
g1(p)=—2(*— 1) +2p+(2—c)p*

) =4 go)=1

4

S e =0, @
vaul)
where: /1
1
x=-n-H,
qo(5) = go(0) — ¢ 5* . (10

) =80 —2
() =g.), (=12, 3, 4}

The solution of the homogeneous differential equation (7) may be expanded
in the neighborhood of the regular singular point in the equation 5=0 into the
series:
yi=?""iﬂf"’r/. (n
im0 :
The roots m; and the coefficients of the series Ai may be determined accord-
ing to the Frobenius method [6, 7]. For n=+(1,2,3...), we get:
m=ll+ 1 m=ln my=—lal+1 me—ia,  (12)

that is, the number of values of the root o, is equal to the order of differen-

tial equation (7).

It is well known from [6] that if the difference in the roocts m, is a whole
number, then series (11) is a partial solution for equation (7), only for the
leading root ml-lnl+l. The remaining three solutions to the differential equation

are constructed in the form of a more general series containing ln p.

Insofar as in the present case we are interested in solutions that are regu-

lar at the point p=0, solutions containing ln o will not be further considered.

The first partial solution is expressed thusly:1

h=" A (13)
im0

lfere and in what follows, the sign of the module on n will be left out.
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where the coefficients are determined according to the recurrent formulas:

. 1
T r 2T+
8 Fy(npl 1) 4,y +Falnt 4 DA, _ptr 4 g+ 01—y
Fin4-141)

Fla 1) = (a4 D Di(a+ L+ a+— D=2 D]+ nfa=
Fatl+)=(n+*—nt

Fintl4+1) =2+ (= D+ D+ —20) —(n+i—1)c

A =0, if <0

A,

Als_

(4

here T'(n+l) is the gamma function.

Substituting the partial solution y; into equations (4), we get the first
solution for the system, regular at zero:
E,=3CUR ")

(15
H,=CTE () )

Here:

U@ =n TSP @)= 27, o
im0
#here:

Q={(a+1+1)>—n?Ai+Ar,.

The solution to equation (9) is built in the same way as the solution to
equation (7). Substituting the solution x; found into equations (4), we get

the second solution for the system, regular at zero:

Ea=GCULP (o)
Here:
%70 = =Y Bt (18)

1=0
C; and C3 are arbitrary constants; the coefficients B, are equal to:
Bom —
2a41D)2°T(n+1)
@ Fy (n4-i+1) By + Fs(a41+1)B,_g +aB_g+(1—) B, {, (19)
Fingt41)
Fy(a+141)=2 n+ I+ a+H4-(1—20~((n+L+1) (n+I—1)Je

Bl--

F and F; are determined according to formulas (14):
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B,=0, if <o (20

o
U e) =o" 3 My,
=
where:

Mi=[(n+1+1)2—n?) Bj+aB;1+ (1—¢c)Bi_s.

The region of the convergence of the series representing solutions (15) and
(17) of the system of equations is determined by the variable coefficients enter-
ing into equations (7) and (9) [6]. This region is an open plane.

The generalized power series entering into expressions (15) and (17) contain

module n, and for this reason, they do not depend on variations in the sign on n.

In the particular cases (ua*O; n+0), the solutions to the system must turn
into known solutions for an isotropic medium or for an azimuthally magnetized

ferrite medium with radial symmetry. We shall investigate these cases.

1. In going to the limit ua*O, system (4) decomposes into two Independent
Bessel equations for Hz and Ez. In this kind of medium, it is possible that there
exist two kinds of waves, TE and T™M waves. If ua+0 (c=a=8+0), the first solution
(15) gives TE waves:

E,=0 H,y= CITI‘!O l") (o Y
where: .
lim T:;_ h () = T(o, |L) (o) = J 00,
c-0,
20

Jn(p) is a Bessel function.

The second solution (17), at ua*O (c=a=n+0), it changes into TM waves:

Ha=0 Egz=CUs 22,
where:
imUs: o) = U 2 (o) = I, ().
€0,
20
2. In going to the limit n+0, system (4) also decomposes into two independ-
ent equations: a Bessel equation for Ez and an equation for Hz reducible to a

Whittaker equation. This 1is the case of radial symmetry considered in [4, 5].

Applying the limit n>0 (R=n+0) to solutions (15) and (17), we get for the

first solution:
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Etl =0, H:! = ClT:‘(),";c)(_’,')_ AR
where:

R . Mg
HmTE O () = T O (o) = 0
n-0 }u

u=2ig}T—c, z= z

2) 1 —r

M 0(u) is a Whittaker function.
bl

For the second solution:

Ha=0, En=GU () 124

where:

lim UL @) = U9 () = o 0

The transverse field components in both cases are determined according to

formulas (6).

From what has been analyzed here, it follows that the solutions to system (4),
regular at zero, include among themselves all types of waves propagated in an azi-
muthally magnetized ferrite medium. In this kind of medium, both components Ez I
and Hz are always distinct from zero (with the exception of the case when n=0).

In Fig. 1 are shown graphs of the following functions:

(a c)(p), (a’c)(o). (" c)(o), (" C)(o) at n=1, @=0.54, c=0.45.

]
/, ' Fig. 1. Graphs of the following func-

4 \\ tions:

Py 4 \\'\ \& T(G’C)(o) (curve 1);

T U S\ ’;’ f“iC)(p) (curve 2);

-42 (a )

] 5 €’ (p) (curve 3);

- - ‘“ 390 (p) (curve 4).

Deriving the Characteristic Equation

b ' We shall examine a round waveguide of infinite length with radius a with an
4 i azimuthally magnetized ferrite rod with radius b. The electromagnetic field
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components for the dielectric surrounding the ferrite can be written in the

form:

En=1[Codrfpy) + CuuN MY
Hzl = [Cin‘ln (pl) + csn”n (Pl” ) ’ ,v

E?l = :12'[—"2%-&'314' K ML:O_ H;l]

H,= ‘lz—l[ l/&Eu +—1Hzl] , (25)
Erl=—xl2_l T & Eu + 2'}’ l/:: H, ]
i ine /“— - . M
—_— 1 So = ! ’
= e | 2y v #o Eu ""H"]
where:
K=V, T=h, Te T eV e = = n=2wm7,
- Ag

‘ -9
€; is the relative dielectric permittivity of the dielectric, 6031306_" » F/m. The

prime symbol denotes differentiation with respect to the argument of the function; /-
CZn’ Cun’ CSn’ Csn are arbitrary constants. The field components in the ferrite
layer are determined according to formulas (6), (15), and (17).

Substituting the expressions for the field c?mw%onents fr eﬁressions (6),
en r=a and r=
(15), (17), and (25) into the boundary conditions, we get six equations for deter-

mining the arbitrary constants:

C’DJI (pll) + C‘INIl (.’jal) = 0| 42")
Cintn (ar) + Con¥a (2,1) = 0, 27
Cu [—%LU'("'"‘) (Gps) + o uY T fpg) — KoTroy (ko) ] B

‘i‘cﬂ[ YK' U‘a ‘)(On)‘—l‘ EzTn 2 (l‘m.) T ‘“E! . C)(-‘b") l :
i

, . LY B N -
Xin ‘/;'1 + Cy4 o V—;% Ja (."{n)—cﬁax—l' Nalop) =

i1 /e . _
) L TR
Cia i":“ ‘/{LU"'T"Q(-%:)—‘CMJ': (trpy) +
Y (4

+Caa U’: 2" @pt) — CeuN , () = 0, 29,

—C1, T P loye) + ‘.i"f':!l. l/-fo!. T2: 2 (gg) + Condalins) = CoalVotgr 0.
(]
- . 30y

c e emiaae - -
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3 - 1ink
‘2, 1K L0 1
—CM[Q“E"U".(',‘C) () + “he Th O (2ag) |
l b2 2
’ = d
s € ., ’(a. n3 7, e
+ Copty JJWM—Q"MMTWMWT%”x:MJ
™ P J

: x5 v/ e l/ 20 N (o) + Con 2L T, () —
4 i KZ " Ho _!‘o o
" = Con B N, (e == 0. 1
4 3Y

In equations (26)-(31), the following notation has been introduced:

[ m,-—-%x,?,’ pu{=2=x,3. E'=Ta-. 5:—}’—,
' ‘0 ‘0

Pua = 28Mad,  ua = 27 Ked, fc.=.f:=1'w——'7‘-

1 €2 is the relative dielectric permittivity of the ferrite.

The condition of the equality to zero of the determinant of systems (26)-(31) /1

determines the characteristic equation with respect to the propagation comstant

Y. It should be noted that the magnitudes Mo and y enter into the characteristic
! equation only as cofactors, or as a ratio. For this reason, the value of the

determinant does not change if the signs on Mg and y are exchanged.

At Y<l in the waveguide, waves of the waveguide type are propagated. If
szu>?2>1, the coefficient k1 becomes imaginary, and in the characteristic equation
it is necessary to exchange the Bessel and the Neumann function for a modified
Bessel function and a Macdonald function. In this case, a surface type wave will

be propagated in the dielectric.

Analysis of Calculation Results

The propagation constant was calculated by using a computer for the quasi-
Hi; principal wave type (n=1l). Secondarily, the quasi-E;; wave mode, which is

most easily excited within exterior type waves, was considered.

Functions represented by the generalized power series (15) and (17) were .

- -

studied preliminarily. In the calculations, 24 initial members of the series for
each function were taken. At the same time, the calculation error in the function
was less than 10-7., For calculations, values of the dielectric and magnetic param-
eters were chosen that are normally encountered in actual ferrites:

t,=6,8 10,12 n=1 p,=4(03 04y &= 1

145




M T TN

The geometrical dimensions of the waveguide and the ferrite varied across

the limits: y==0.2-0.3 with a step of 0.00L, §=o.3—o.65, with a step of 0.05.

For the sake of generality in the derivations, all parameters and values

of the propagation constant were normalized to the wavelength.

In Figs. 2, 3, 4, and 5, the relationships of the differential phase shift
a’ g are presented. The curves fall off to

AY and Taa for various values of €2, u
the right for those values of faa at which the quasi-E;; wave mode arises.

"
£Lg \\ ! l
i e i
2485 ~
f\ s 1 : Fig. 2. Dispersion characteristics
ey at €2=6;
= oo HTH0LA
m-r "t s
l}" - X
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& NUNSGL Fig. 3. Dispersion characteristics
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As may be seen from these figures, the character of the relationships between
the differential phase shift and the frequency is not constant. Along some sec-

tions (with normal dispersion), with an increase in frequency the values of
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A?sf(f%) increase. These sections correspond to relatively "weak' fillings of
the waveguide by means of the ferrite. On other sections, the characteristic runs
almost parallel to the abscissas axis, and then in third sections, an increase

in the normalized propagation constant decreases with an increase in frequency.

In this latter case, the phase shift to a unit length either does not vary
with an increase in frequency, or it varies only in relation to the slope of the
characteristic. Propagation of waves on this section may occur only with a very
strong filling of the waveguide by means of the ferrite or with large values of
€2.

In this way, the character of the frequency relationships is determined basi-
cally by the degree of filling of the waveguide by the ferrite. With an increase
in the filling of the waveguide by the ferrite, the concentration of the superhigh
frequency energy increases in the latter. At first, with a weak filling, the ef-
fect of the dielectric waveguide shows up strongly, and the concentration of super-
high frequency energy varies strongly with frequency variations. Beginning at a
certain moment, when all the energy, even at the low frequency portion of the fre-
quency range, 1is concentrated in the ferrite, this relationship becomes weak, and

the characteristics become less dependent on frequency.

The form of the curves in the third section are connected with the excitation
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of waves and their propagation in regions near the critical regions, with large
2 or €2. It is possible to explain this beginning with the curves §(+ua)=f(f%) i
shown in Fig. 6.
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The relationships between the differential phase shift and the degree of
£illing of the waveguide by the ferrite EY=f(g) are shown in Fig. 7.

From the figure, it may be seen that the activity of the phase shifter in-
creases at first with an increase in b/a, while this relationship becomes less
frequent the larger c2. With further increases in the filling, the increase in
this characteristic slows down, and then it begins to drop. This nature of the
curves can be explained by variation in the concentration and structure of the

superhigh frequency field im the ferrite.

At determined diameters of the ferrite, different for each €2, a maximum con-
centration of the superhigh frequency field occurs in the area of the radial wave
polarization in the ferrite. 1In this case, the phase shift reaches a maximum value. /1
Further on, the energy is redistributed across the cross section of the waveguide,
as a result of which the interaction between the superhigh frequency field and the
ferrite becomes weaker. As a consequence, there is no sense, from the point of

view of enhancing the phase shifter activity, in increasing the value of b/a by /1
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means of a more well-defined value.

On the other hand, from a comparison of the curves in Fig. 7 with the fre-

quency characteristics, it follows that in order that the frequency characteris-

tics not be dependent on the frequency, it is necessary to work with fillings

& ki S R

that are smaller than those corresponding to the maximum activity for all values

of €2 under consideration.

One of the more important parameters characterizing phase ferrite equipment
; is the level of losses, and connected with this, Q-factors. Under "Q-factor," it
has become accepted to mean the ratio between a derived phase shift in degrees

to losses expressed in decibels. A precise determination of the magnitude of

s —

losses requires substituting the tensor components i and g2 into the base equationm,
taking into account their imaginary portioms. For an approximate assessment of
losses and the Q-factor in a region far from the ferromagnetic resonance, it is
possible to use the well-known method cited in work [8], expanding the functiom

y(e2, u, ua) into a Taylor series around a value corresponding to the case without

S e e P I —

losses. Thus we get:
Al -{--u."aT -r-p;i:— (32)

1 ==z'—-t- du,
The values of the derivatives are determined graphically, and for this the
equations ;'-f(u'a), Y'=£(u'), and §=f(¢'a) are constructed according to the com-
putational data. The values for the imaginary components of the dielectric and

magnetic permittivity are taken to be equal to £4Y=0.02, u"=0.003, and u"a=0.002.

Losses in the phase shifter with a phase shift of 360° (dB) are expressed

thusly:
P=54,7J;=[db] ' (33)
Ay d
and the Q-factor thusly:
34
Q=663 F&z’] e
A comparison of losses with the Q-factor of various phase shifters is car- 3

ried out in the medium frequency range, in which there is observed a weak rela- 1

tionship between them and frequency. The calculation results are shown in Fig. 8. s
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From a consideration of the curves, it is apparent that with an increase in the

ferrite dielectric permittivity, the optimal diameter of the ferrite and a length
necessary for deriving A¢=360° decrease. At the same time, the magnitude of the
differential phase shift to a unit length, overall losses, and the Q-factor, vary

across a wide range.

Conclusions

The analysis carried out here of the functioning of a phase shifter with an

azimuthal bias makes it possible to draw the following conclusions.

1. The character of the frequency relationships is determined basically by
the degree of filling of the waveguide by the ferrite and by its dielectric per-
mittivity.

2. The frequency deviation-duration product for a phase shifter is deter-
mined mainly by the magnitude €2. At e€7=6, the value for the normalized differen-
tial phase shift is maintained as a constant with an accuracy to within 1% of
the range of 16%, at ¢;=8, within the range of 12%, and at ¢2=10, within the range
of 9%.

3. In creating phase shifters that work across wide bandwidths, it is
possible to derive phase shifts on the order of 0.4 to 0.5 rad/cm with Q-factors

around 270,

4. The theoretical studies carried out in this article may serve as the
basis for designing phase shifters of a similar type.

kX Xk %
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A SPIRAL LINE WITH AN AZIMUTHALLY MAGNETIZED FERRITE CYLINDER /1

N. G. Motorin, B. C. Khmelevskiy, R. R. Yurgenson

A calculation is carried out for the propagation constant and the differen-
tial phase shift for the principal wave type in the following structure: a
spiral line with an azimuthally magnetized ferrite, with the line disposed in
an unbounded dielectric medium.

An assessment of the influence of the spiral parameters, the ferrite param-
eters, and the dielectric surrounding the spiral on the magnitude of the differ-
ential phase shift in the frequency range is given.

Introduction

Recently, a great amount of attention has been afforded the development of
bistabile ferrite phase shifters. In the works [1, 2], experimental results on
phase shifters using azimuthally magnetized ferrites in a rectangular waveguide
have been described. In work [3], the theory of and calculations for a phase

shifter in a round waveguide are presented.

It is of interest to examine a spiral line with an azimuthally magnetized
ferrite cylinder on the inside and a dielectric material on the outside in contact
with the spiral as a system representing a phase shifter. Several problems in
thé'theory and calculation for the spiral line with an azimuthally magentized fer-
rite disposed on the outside of the spiral are given in [4]. The dispersion
equation for the azimuthally magnetized ferrite cylinder within the spiral located

in an unbounded space is presented in (5].

Deriving the Dispersion Equation

We shall examine a single-thread spiral with a radius a, pitch t, and helix
angle ©, within which there is located an azimuthally magnetized ferrite cylinder,
and outside of which there is an unbounded dielectric with dielectric permittivity
€2.

In deriving the dispersion equation, we will assume that a thin conductor for
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pulse reversal of magnetization is disposed along the axis of the ferrite cylin-

der and does not have any noticeable influence on the electromagnetic field. The /1
ferrite possesses a rectangular hysteresis loop, and current pulses act on it hav-
ing such pulse heights that the residual magnetization does not depend on its

radius.

The symmetrical case is taken into consideration, when the electric field

components do not vary in azimuth.,

In a cylindrical coordinate system (r,¢,z), the tensor of the ferrite perme-
ability has the form:
" 0 ipe
eh={f 0 o Of. )
—ip, O t

For residual magnetization MsMo (Mo is magnetic saturation) in a SI {expan-
sion unknown] system may be taken approximately according to [5] to be equal to:
M 2

Ba=be s

where up is the permeability of a vacuum, Y is the gyromagnetic ratio, and w is

angular frequency.

The diagonal components for this are equal to:

pp, =1 G

Using [4], we may write expressions for the fields in the ferrite and the
dielectric with great lag when the radial wave numbers in the ferrite and the

dielectric are approximately equal:

in the ferrite:




C.M, (2810
1 sl V2|ﬂ|f x, 0( ‘3")

i % [0, S., o(2081r)+- 28251, 0 (214r)]

Hll

H, = i‘ilf;"—‘llx (1317) . 4

¢l
“ En=Cdo(Bir)
Ep,= iCJ;(I@I r)

0,22
E,=—i i'a(—:ﬁ‘-ﬁls.. 1 (2317)

Here, M (2|8|r) is a Whittaker functiom,
Xy
S, (218lr)= 2* Sc.o(2iBir)+S, @BIN]

—_—— %3

P
B8 is the propagation constant, **ﬁsgns, €1 is the dielectric permittivity of
the ferrite, Ig, I; are modified Bessel functions, and the prime symbol denotes
differentiation with respect to the independent variable:

in the dielectric:
H = DKo (8|7
Hp =" iDle(lﬂlr)

Hy=—1Dy 22 Ki(Bin)
Ex= DKo (181 )
Ea=—iDJK (17
E,=1i %Dxxt(mf)

, ©)

where Ky, K; are Macdonald functions, C;, C2, D;, Do are unknown coefficients.

In expressions (4) and (5), the factor exp{i(wt-B8z)] has been left out.
Substituting these formulas with re=a into the toundary conditions for an aniso-

tropic cylinder: .
En=En E,=E4y EysWO+E, =0,

Hatg® +Hyy=Hyatg + Hy ©

we get the dispersion equation, which holds good in the case of a small phase
shift between current in neighboring windings of the spiral (tg«2r) [7):
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where:

-?= K.:t‘o' ".‘mv!dl..

€ps Ep are the relative dielectric permittivities of the ferrite and the dielec-
tric.

At en=1, equation (7) is in agreement with the equation derived in (5].1

Calculating the Propagation Constants and the Differential Phase Shift

The calculation of the propagation constant from equation (7) was carried out
according to the methodology described in [4]. Graphs of the Kummer function
were used [8], as well as the relationship between the Whittaker functions and

the Kummer functions:

1
Moo "’(’2“’" i “)
M, | (@) (3 Y
T u(b{ 2 -, 3: u)

v

where 0 is the Kummer function, u-ZIBIa.

With large independent variables, the asymptotic expansion of the Kummer

function was used [8].

The calculation was carried out for a ferrite with a¢-7,9,11 and with tensor
H
components of its permeability ﬁ%-l and E%-i(0.3; 0.5; and 0.8). These values
correspond to the residual magnetization of the ferrites used in the superhigh

frequency range.

If the tensor |{u]| 1s expressed according to formula (1), the component Ha<0
corresponds to the case when the propagation direction of the wave is in agreement
with the positive value of the z-axis and opposite to the direction of magnetizing
current. With this current direction, the propagation constant is strongly dependent

1The dispersion equation in [5] evidently contains typographical errors, because
according to the sense of the text, the equation should contain modified Bessel
functions.
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on the residual magnetization (Fig. 1). The relationship of the normalized /1

propagation constant 8 to the normalized radius of the spiral E=amoctge at vari-

u
ous values of U% is shown in this figure.

The introduction of a dielectric on the outside of the spiral leads to an
increase in the propagation constant, both for the negative value of Mgy as well
as for he positive value (Fig. 2). At the same time, the differential phase shift
increases, and the region of the nondispersion characteristic AR shifts to the

side of the smaller values of a (Fig. 3).
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“ i Fig. 2. Relationship between the nor-

Fig. 1. Relationship between_the nor- malized propagation constant B and the
malized propagation constant 8 and the normalized spiral radius a for a ferrite

normalized spiraluradius a for a fer- with ey=9, £%=1, and ﬁ%=t0.3 at various
rite with §¢=ll, 53:1’ €q=l at various values of € for the dielectric:
values of — ———¢ a3} ~e—mem— ¢ =7}
€ ®10: ~=e oo o— =]15.
Ua Ha H En
o +0.3; 7o +0.5; o +0.8.
a4
a7
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T‘/‘// /
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Fig. 3. Relationship between the region of the nondispersion charac-
teristic A8 for a ferrite with:
s¢-9, ﬂ%—l, and ;%-10.3 at various values of € for
the dielectric:

- P a® O O, en-l; —— 53-3; ——— - en-7; En.lo; St Sn'ls.
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The region of anamolous dispersion shows up clearly expressed; it can be

used for creating phase shifters with differential phase shifts only weakly de-
pendent on frequency.

The analysis of expression (4) for the magnetic components H,. and H, makes
it possible to explain the increase in Ag with increases in t}: dielectric per-
mittivity of the surrounding space. A redistribution of the fie.ds in the struc-
ture under consideration takes place in such a way that in the ferrite, the polari-

zation region close to the radial region is extended for both bias orientations.

An increase in dielectric permittivity of the ferrite in the spiral system,
just as in the case of the waveguide variant in [3], leads to an increase in the
differential phase shift (Fig. 4). However, when there is no waveguide variant,

the character of the variation in the differential phase shift in the frequency
range is maintained.

A l -
} ! . '
| | ! e T

49 | | /;/ ' g

7~

w 4

15—

14

7

Fig. 4. Relationship of the normalized propagation constant B and the
normalized spiral radius a for ferrites with:
o
Loy, 2e10.3

o o ’ en-l at various values of £t

——— eg~7; efh—_mefn.
It 18 of interest to compare the value of the differential phase shift to a
unit length of the system for spiral and waveguide phase shifters. For a spiral
phase shifter with parameters a=l1.5 mm, ctgé=12, e¢r9, enfl, ﬂ%-l, and E%-*O.S, /1
the value of the differential phase shift Ay=155 degrees/cm. If enflo, then
Ay=195 degrees/cm.
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The value of Ay derived in the cited work [3] for qb=9, J%=l, and ;%=i0.3,
and for a ratio of the ferrite radius to the waveguide radius equal to 0.47, is
21.5 degrees/cm, that is, the spiral phase shifter gives a differential phase
shift per unit length several times greater than the waveguide phase shifter.

The small dimensions of a spiral phase shifter require significantly less

power for phase switching.

The calculation presented here makes it possible to choose the geometrical
dimensions and electric parameters of a system for designing a small-dimension

phase shifter on a spiral line.
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CALCULATION OF A Y-CIRCULATOR WAVEGUIDE WITH A FERRITE-DIELECTRIC ELEMENT /1

V. I. Vol'man

Results of calculations on and experimental studies of a Y-circulator wave-
guide with a ferrite-dielectric element are analyzed.

Introduction

As was demonstrated in work [1], the functional band of a Y-circulator wave-
guide increases in proportion to a decrease in the dielectric permittivity of the
ferrite from which the ferrite cylinder is made. A similar effect may be expected,
if a dielectric sleeve made of a material with e>1 is placed on the ferrite cylin-
der. At the same time, the energy concentration in the ferrite cylinder decreases,
and this is equivalent to a decrease in its dielectric permittivity. In this way,
a Y-circulator with a ferrite-dielectric element is equivalent, according to its
features at the first anproximation, to a Y-circulator without a dielectric sleeve,
but having a decrease in the value of the ferrite dielectric permittivity. This
makes it possible to affirm that the principles of functioning in both variants
of a Y-=circulator are identical, and it yields the possibility of using all the
ideas and methods for calculation analyzed in [1] for calculations involving a

Y-circulator with a ferrite-dielectric element.

A standing wave of the first harmonic of an electric field is established at
the central frequency of the working range of a Y-circulator with optimally selec-
ted values for the electrical parameters and the diameter of the ferrite cylinder
on the Y-circulator surface (Fig. 1) [l]. One of the nodes of this kind of wave
is disposed along the longitudinal axis of a side shoulder of the waveguide 2.

At the same time, a type Hy; wave 1s excited on shoulder 2; this wave is a higher

type wave for a rectangular waveguide in shoulder 2, and comsequently, it cannot

be propagated in 1it.

By analogy with a Y-circulator without a dielectric sleeve, for determining /]
the optimal dimensions and parameters of the ferrite-dielectric element, it is
necessary to study the electric field structure on the surface of the dielectric

sleeve fitted onto the ferrite cylinder, and it is necessary to explain the
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Fig. 1. Field structure on the surface of a ferrite cylinder.

conditions under which the electric field distribution takes the form shown in
Fig. 1. At the same time, it is assumed that a Y-circulator with a ferrite-
dielectric element will have optimal parameters, if the given field structure

is established.

A very high dielectric permittivity of the ferrite and the presence of a
dielectric sleeve causes a significant energy concentration in the ferrite-
dielectric element and in the space immediately contiguous to it. At the same
time, the distribution of pulse heights and phases of the propagating waves in
the region of the junction of the waveguide shoulders of the circulator depends
basically on the ferrite-dielectric element, and only to a small degree on the
configuration and disposition of the metallic surfaces forming the Y-joint of the
waveguide. For this reason, for studies on the field structure of a field on the
surface of a dielectric sleeve, it is possible to disregard the effects of the
Y-joint and to assume that the ferrite-dielectric element is disposed in an un-

bounded, isotropic medium with parameters €0 and ug.

Deriving the Basic Relationships

Assuming that the structure of the wave incident on the ferrite-dielectric
element does not differ from the wave structure of the principal wave mode type
in an H-plane horn, we mhy write the voltage vector components of its electrical
and magnetic field in the following form [2]:
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where o= 0¥ Tw=-".® is the frequency of the contiguous electromagnetic

WP' -
~
(3
® |@

field.
A The voltage vector component of the magnetic field of the incident wave tan- ;
ential to the surface of the ferrite-dielectric element may be expressed thusly: ‘
, & y
] Heuu= Hgn-;si"(e— ‘P)"'ku cos (0 — ¥). (2} :
]
Using the addition theorem for cylindrical functions, after transforming from
"formulas (1) and (2), we get:
- - ) . ine
f Evun= 5 3 (s o RO DHE, 4 (o R a o) e 0
.3 r “ Ram 08 -
' - An el ne
} X
- . < t3y 1
Henu = 4o z {[Hr(tQT/z(*oRl)'é'('—l)"H-(:lx—E 'E(l"’ R‘)] J"“ '(W)_ |
Nam— 0O y
—_ [ng.w,'z (%o R) + (=1 H?, , (%o Rl)l o1 (o)) e’ = :
—_ __i. “’ B e!nO
= o B
AN 0D

where R; is the distance between the center of the Y~joint and the upper horn.
(Fig. 2).

.4 -~ -

Fig. 2. Y-joint with a
- ferrite-dielectric element.
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The tangential components of the field within the magnetized ferrite cylin-

der along the axis and in the dielectric may be written in the following form:

1. at 0srsrg:

Ea= 2 PN AL

AP l
3 LW
Hg)=_ i Xau[";(*xf)-i = Jn(";’)]e‘ne l
'h_ u ‘J.’
L ]
where:
-, 2=l P -alep,,
‘e s -

€ is the dielectric permittivity of the ferrite, u and « are tensor elements of

the ferrite permeability, ry is the radius of the ferrite cylinder.

2. at rg<r<Rg:

Ed= 2 [(6adn (a7} + oYy (’l'ne“‘.

Now—ce

. : , )
H® = — 4 [6a Y (xx7) + € YV, (xx 7))

%
2 T

where:

€ and B, are respectively the dielectric permittivity and the permeability of
the material from which the dielectric sleeve is made; Rg is the dielectric sleeve

radius.

If in accordance with the presumption stated above we disregard the effects
of the metallic surfaces forming the Y-joint, then the tangential field components
of the field dispersed spatially into the surrounding ferrite-dielectric element
are equal to (at r2Rp):

Ed= 2 d H® (xgr)e'"®

- (€)
HD = — - NYa yor ine
. . AE HD (xr)e
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The coefficients entering into formulas (4)-(6) are determined after sub-
stituting these formulas into the following boundary conditions:
EV=ED, HD=HQ atr=ru o

E(,2)=E‘ya)";‘£ynuv H$,=H9)+Hhuag at f=R.’ &)

as well as the solutions to the linear system of equations emerging with this.

As a result, we get:
b, tn .
g, = -—__—-In (‘: 7o) [Ju (1lf°) -+ -;n- Yn (‘l ra)]

_"ﬂ_ H’lz"("ﬁ R.) _
T HP(gR) " "

b, = o
Dn“‘an , 19
=b [
fa=ba()
=t [J ( R)+ 2V, (4, R ]——-——‘"
du Hg) (g Re) [Jn("x o) b n(.l o) Hsl‘l) (% Ry) ]
where: h{%hﬂd X _n ] In (2270
o _dalary M LIl p *ir0 ) s (rarg) (19)
L Yo (2a0) N [1; (. & _n J Y, (xa ro)
KN Inlr rd ™~ B %7 - Ya(xxrg)
H® (24 Ry) .
D=8 2 22 (x,R)—J. (¢, R), (h
n %o H},"" (1. R.) a( A 0) a\ra ™o
HD (2, R s
F,= Ja _:_S:L:)_y. (2 Re) — Y, (x; Ro). (I

% HP (% R)

The formation of the required structure of the electric field (see Fig. 1)
on the surface of the dielectric sleeve is possible only in the case when, at
=Ry, the pulse heights of the harmonics with indices n=(l) and n=(-1) are: (1) /1
equal to each other, (2) significantly exceed pulse heights of the harmonics with
[n]|#1,and (3) are phase shifted with respect to one another by 60°. After simple
transformations, it is possible to demonstrate that the first and third conditions
are met, when the following equations are fulfilled:

Y, (2aRe) 4 ¥ (aeRs) 2J; (¢ Ry)
YiaRe) % Yi(aR)  mugR Y (39 Re) [ /3 (24 Re) + V7 (24 Ro))|

(e (22— Y pp] - 2 ‘[_; S
2 [Lf (l‘ L "L’O) Ml] Rag Ry Y (2g Ry) L hib )
_Y;(‘l’o) (& 2 1\ ] 13
Y:('l’o)]lq (P " "*”) Mo (13)
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= |Jta — —_——tiae . 15
L, [ n_ Ni(x_ro) ¥y (xpry) ! Rapre Y] (xg7,) )
_ _ Di(zan) .
M, = J,(x; Ry) —__—Yx (a o) Y (x5 Ro); (16)
Sl___2V3 i (% o)': 1(% Ry) . an
R *zle Yl ('l. ’.)

The simultaneous solution of equations (13) and (14) makes it possible to
determine the necessary dimensions for the ferrite cylinder and the dielectric
sleeve, that is, it yields a solution for the problem posed. However, because of
the cumbersomeness of the equations derived, it is difficult to prove analytically
that in this case the pulse height of the harmonics with |n|=1 significantly ex-
ceed the pulse heights of all the other harmonics. For this reason, the fulfill-
ment of these equations was checked by a direct numerical calculation, whose re-

sults are examined below.

Results cof Numerical Calculation

In comparison with a Y-circulator without a dielectric sleeve, in the circula-
tor variant under consideration here, the parameters are significantly freer, that
is, they have magnitudes which can be conveniently assigned arbitrarily within
physically determined and applicable limits. Seven independent values are con-
tained within the generally complex forms of equations (13) and (14): the dielec-
tric permittivity of the ferrite €; its effective permeability u,; the ratio of
the permeability tensor elements E; the radius of the ferrite cylinder multiplied /1
by the wave number in free space %/;; the dielectric permittivity of the sleeve
material en;‘the permeability of the sleeve material ug; and the exterior diameter
of the dielectric sleeve multiplied by the wave number in free space xR, . A
sleeve 1s usually made from a dielectric (fluoroplastic, polystyreme) with up=1
and ed-2.2-2.5; this reduces the number of free parameters to five. For the nor-~
mal functioning of a Y-circulator, as emerges from the analysis carried out above,
it is necessary that a system of two equations be satisfied. Consequently, of the
remaining five arbitrary parameters, three may be assigned, and two may be deter-
mined from solutions to equations (13) and (14). As will be shown below, the selec-
tion of parameters is somewhat restricted by the demand that the discrimination
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between the shoulders of the Y-circulator be not less than 20 dB.

The calculation was carried out in the following order. The values for ¢,
Bys €, Mo, and «ofoy were assigned, and from equations (13) and (14), the values
for %Ro and E were determined. The values of « and u may be found from the

equation ul-u[l-(g)z]. In all calculations whose results are represented in the

form of graphs in Figs. 3-4, it was taken that en-z.é and u,=1.

(a) . (b)
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Fig. 3. Relationship between the optimal magnitude of the exterior
radius of the dielectric sleeve and the ferrite cylinder radius.
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Fig. 4. Relationship between optimal values for the tensor parameters
of the ferrite and the radius of the ferrite cylinder.
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It is interesting to note that at some values of ¢ and u;, the application

of a thin dielectric sleeve leads to a decrease in the ratio E, that is, it

makes it possible to reduce somewhat the voltage of the exterior magnetic field.

With an increase in the sleeve diameter, the ratio E } 2ins to increase rapidly.

This means that Y-circulators with thick dielectric sleeves function with large

magnetizing fields, which is confirmed by experimental data. If for a Y-circulator

without a dielectric sleeve, fields with intensities on the order of 50 to 200

oersteds are normal, then in broadband Y-circulators with a dielectric sleeve,

the magnetizing field intensity increases to 800 to 1,000 oersteds.

O g - AR e 47

;£ We shall examine the influence of harmonics with an index n¥l on the param-

eters of a Y-circulator. A uniform field distribution on the surface and around

a ferrite cylinder corresponds to the zero harmonic (n=0) of the electric field.

For this reason, under the influence of the field of this harmonic, all shoulders

' of the circulator are uniformly excited, that is, even at the central frequency

i of the Y~circulator's working range, a portion of the power enters the insulating

! T shoulder, and the discrimination between the side shoulders of the circulator has

i a finite value. Thus, it turns out from the calculation that depending on the

} decrease in the dielectric sleeve diameter, the value of the maximum possible

achievable discrimination decreases.

An analysis of the expressions for the pulse heights of harmonics with indices

n22 and the results of the numerical calculations show that with real values for

the parameters of the ferrite and parameters of the dielectric sleeve, the great-

est amplitude (pulse height) of all the harmonics at Inlzz is possessed by the /1
second harmonic (on the order of 0.1-0.25). However, the distribution of the

second harmonic of the electric field on the dielectric sleeve surface is such

that it has practically no influence on the division of the power between the
circulator side shoulders (see Fig. 3 and [1]).

Frequency Range Characteristics

The working frequency range for a Y-circulator is restricted by the minimal

USRI

necessary value of discrimination between the circulator side shoulders (normally
20 dB) and by the maximum achievable reflection factor from its input (normally
As is well known [3], these parameters are

not greater than 0.05 to 0.12).
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interlinked, and this makes it possible in an investigation of frequency range
characteristics of a circulator to examine the relationships between the frequency
and only the magnitude of discrimination.

If the frequency of electromagnetic oscillations entering as input into a
Y-circulator is different from the resonant frequency of the circulator, then, as
it follows from calculation, the amplitudes of the harmonics with indices n=1 and
n=-1 cease to be equal. In addition, the optimal phase relationships between these
harmonics [1] are disrupted. As a result, the formation of the pure standing wave
of the first harmonic of the electric field on the surface of the ferrite cylinder,
as shown in Fig. 1, becomes impossible. This leads to the excitation of a type
Hyp wave mode in the insolating shoulder of the circulator, and as a result, also

to a decrease in the discrimination between the circulator side members.

In Fig. 5, the relationship between the relative width of the working fre-
quency range of a Y-circulator and the diameter of a dielectric sleeve fitted onto
the ferrite circulator is shown at various values of the ferrite parameters. The
working frequency range of a Y-circulator is determined as a difference in fre-
quencies, between which limits the discrimination between the side shoulders of
the circulator is not less than 20 dB. The order of this computation does not
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Fig;-E: Working frequency range of a Y-circulator with different
values of y,.

differ from that analyzed in the article in work [l1]. With the calculation, it is
presumed that the zero harmonic of the electric field has no influence on the /1
magnitude of discrimination. However, with sufficiently thick dielectric sleeves,

the pulse height of the zero harmonic becomes so great that even at the Y-circula-
tor's resonant frequency, the discrimination between the side shoulders is less

than 20 d3. This imposes a restriction on the selection of the maximum dielectric
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sleeve diameter and disallows the possibility of realizing a working frequency

range greater than 8 to 10%. In Fig. 6, the relationship between the maximum
achievable frequency range of a Y-circulator and the electric parameters of a

ferrite with a discrimination not exceeding 20 db is presented. As may be seen

zﬁée:
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Fig. 6. Maximum achievable working frequency range for a Y-
circulator with a dielectric sleeve.

from the graphs presented here, the use of a dielectric sleeve yields the pos-

sibility of extending the working frequency range of Y-circulators in comparison

with Y~circulators without dielectric sleeves by several times.

Results of Experimental Study

As for the case of a Y-circulator without a dielectric sleeve as well [1],
for confirming the correctness of the presumptions at the base of the calculations
for a Y-circulator waveguide with a ferrite-dielectric element, the distribution
of the module of electric field intensity on the surface of a dielectric sleeve
in a tuned Y-circulator was experimentally measured. The measurements were car-
ried out with the help of a rotating sonde [1]. In order to avoid substantial er-
ror during this, the ferrite-dielectric element was attached to a rotating plug

with the sonde.

The results of the experiment, presented in Fig. 7, confirm the presupposition
concerning the fact that the principle of functioning of a Y-circulator with a
ferrite-dielectric element and the physical processes taking place in it are iden-
tical to the same in a Y-circulator without a dielectric sleeve.

Ingofar as there are no data in the literature concerning parameters of Y-

circulators with ferrite-dielectric elements, in order to check the calculation i R
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results, the parameters of a Y-circulator waveguide with various ferrite-dielec~-
tric elements were measured. Ferrite cylinders were prepared from grade M-18

ferrite with €=8.1 The results of the experimental study and corresponding cal-

culational data are presented in the following table.

Ho a, £ x B l oy | 2R
s +
0,24 0,23 i 007 | l 0.9
1
0,91 —_ pdniid ~— i ()'2 —_
88 0.37 0.38 s | P T
.35 .33 ¢ ' T
125 0.83 (&) 9___ 0,_95 0,65 ' —_
0,45 0,45 oo RIS
0,45 0,42 0,92 ! L1
172 | 0,73 === —=s 0.62 -
' 0,52 0.51 nor I ! 1.2
K . ! | 2
2 | on | ¥ 0.4 UL N B
0,44 0.4 i 0,91 : i,2x
0,74 0.6 0.81 | .41
00 | 0,3 - = — 0.%6 =
0.66 0.52 o | RE
|

Note. In the denominators of the fractions, values derived
by means of a calculational method are shown.

Fig. 7. The experimentally derived structure of an electric
field on the surface of a dielectric sleeve.

Values for u, and :%/s found experimentally were taken as baseline data for
the calculation. All values entered into the table were derived at the central

frequency of the working circulator frequency range.?

In the work cited [4], an experimentally plotted curve of magnetization for this
kind of ferrite is presented. This makes it possible according to a known ex-
ternal magnetic field intensity to determine the tensor parameters of the ferrite,
taking into account the demagnetizing factors, and to compare them with the val-
ues generated from calculation.

170

/1

/1




e e a4 " s \nchdn anth v P e ol - - o - p i Camacny Jakd albid
P - i, s ISR ¢~ in bt e i . -
ol P - e K - * - ) t e e, 'b-.:sa o _— . e e B . 8

As may be seen from the table, the agreement of calculational and experi-

mental data is quite satisfactory.

:' ‘ 2The measurements were carried out in the three-centimetric range.
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